Publications

Export 30 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Alves Ferreira, D, L MMDRS, A FR, Martins M.  2020.  A Tale of Two Ends: Repurposing Metallic Compounds from Anti-Tumour Agents to Effective Antibacterial Activity, 2020. Antibiotics (Basel). 9(6) AbstractWebsite

The rise in antibiotic resistance coupled with the gap in the discovery of active molecules has driven the need for more effective antimicrobials while focusing the attention into the repurpose of already existing drugs. Here, we evaluated the potential antibacterial activity of one cobalt and two zinc metallic compounds previously reported as having anticancer properties. Compounds were tested against a range of Gram-positive and -negative bacteria. The determination of the minimum inhibitory and bactericidal concentrations (MIC/MBC) of the drugs were used to assess their potential antibacterial activity and their effect on bacterial growth. Motility assays were conducted by exposing the bacteria to sub-MIC of each of the compounds. The effect of sub-MIC of the compounds on the membrane permeability was measured by ethidium bromide (EtBr) accumulation assay. Cell viability assays were performed in human cells. Compound TS262 was the most active against the range of bacteria tested. No effect was observed on the motility or accumulation of EtBr for any of the bacteria tested. Cell viability assays demonstrated that the compounds showed a decrease in cell viability at the MIC. These results are promising, and further studies on these compounds can lead to the development of new effective antimicrobials.

2019
Kourmentza, C, Araujo D, Sevrin C, Roma-Rodriques C, Lia Ferreira J, Freitas F, Dionisio M, Baptista PV, Fernandes AR, Grandfils C, Reis MAM.  2019.  Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product, 2019. Bioresour Technol. 281:31-40. AbstractWebsite

While screening for polyhydroxyalkanoate (PHA) producing strains, using glycerol rich by-product as carbon source, it was observed that extracellular polymers were also secreted into the culture broth. The scope of this study was to characterize both intracellular and extracellular polymers, produced by Pseudomonas putida NRRL B-14875 and Pseudomonas chlororaphis DSM 50083, mostly focusing on those novel extracellular polymers. It was found that they fall into the class of bioemulsifiers (BE), as they showed excellent emulsion stability against different hydrocarbons/oils at various pH conditions, temperature and salinity concentrations. Cytotoxicity tests revealed that BE produced by P. chlororaphis inhibited the growth of highly pigmented human melanoma cells (MNT-1) by 50% at concentrations between 150 and 200mug/mL, while no effect was observed on normal skin primary keratinocytes and melanocytes. This is the first study reporting mcl-PHA production by P. putida NRRL B-14785 and bioemulsifier production from both P. putida and P. chlororaphis strains.

2018
Vinhas, R, Lourenco A, Santos S, Ribeiro P, Silva M, de Sousa AB, Baptista PV, Fernandes AR.  2018.  A double Philadelphia chromosome-positive chronic myeloid leukemia patient, co-expressing P210(BCR-ABL1) and P195(BCR-ABL1) isoforms, 2018. Haematologica. 103(11):e549-e552. AbstractWebsite
n/a
Svahn, N, Moro AJ, Roma-Rodrigues C, Puttreddy R, Rissanen K, Baptista PV, Fernandes AR, Lima JC, Rodriguez L.  2018.  The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes, 2018. Chemistry. 24(55):14654-14667. AbstractWebsite

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 mum) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 mum), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-Hpi contacts as the main driving forces for the three-dimensional packing in these molecules.

Alves, PU, Vinhas R, Fernandes AR, Birol SZ, Trabzon L, Bernacka-Wojcik I, Igreja R, Lopes P, Baptista PV, Águas H, Fortunato E, Martins R.  2018.  Multifunctional microfluidic chip for optical nanoprobe based RNA detection - application to Chronic Myeloid Leukemia, 2018. Scientific reports. 8(1):381. Abstract
n/a
Alves, PU, Vinhas R, Fernandes AR, Birol SZ, Trabzon L, Bernacka-Wojcik I, Igreja R, Lopes P, Baptista PV, Aguas H, Fortunato E, Martins R.  2018.  Multifunctional microfluidic chip for optical nanoprobe based RNA detection - application to Chronic Myeloid Leukemia, 2018. Sci Rep. 8(1):381. AbstractWebsite

Many diseases have their treatment options narrowed and end up being fatal if detected during later stages. As a consequence, point-of-care devices have an increasing importance for routine screening applications in the health sector due to their portability, fast analyses and decreased cost. For that purpose, a multifunctional chip was developed and tested using gold nanoprobes to perform RNA optical detection inside a microfluidic chip without the need of molecular amplification steps. As a proof-of-concept, this device was used for the rapid detection of chronic myeloid leukemia, a hemato-oncological disease that would benefit from early stage diagnostics and screening tests. The chip passively mixed target RNA from samples, gold nanoprobes and saline solution to infer a result from their final colorimetric properties. An optical fiber network was used to evaluate its transmitted spectra inside the chip. Trials provided accurate output results within 3 min, yielding signal-to-noise ratios up to 9 dB. When compared to actual state-of-art screening techniques of chronic myeloid leukemia, these results were, at microscale, at least 10 times faster than the reported detection methods for chronic myeloid leukemia. Concerning point-of-care applications, this work paves the way for other new and more complex versions of optical based genosensors.

Vinhas, R, Lourenco A, Santos S, Lemos M, Ribeiro P, de Sousa AB, Baptista PV, Fernandes AR.  2018.  A novel BCR-ABL1 mutation in a patient with Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia, 2018. Onco Targets Ther. 11:8589-8598. AbstractWebsite

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) represents the most common genetic subtype of adult ALL (20%-30%) and accounts for approximately 50% of all cases in the elderly. It has been considered the subgroup of ALL with the worst outcome. The introduction of tyrosine kinase inhibitors (TKIs) allows complete hematologic remission virtually in all patients, with improved disease-free survival and overall survival. Nevertheless, the emergence of resistant mutations in BCR-ABL1 may require different TKI strategies to overcome the patient's resistance and disease relapse. Here, we report a Ph+B-ALL case with persistent minimal residual disease (MRD) after treatment with dasatinib. The patient expressed the P190(BCR-ABL1) isoform and a novel BCR-ABL1 mutation, p.Y440C. The latter is in the C-terminal lobe of the kinase domain, which likely induces deviations in the protein structure and activity and destabilizes its inactive conformation. The treatment was substituted by bosutinib, which binds to the active conformation of the protein, prior to allogeneic bone marrow transplant to overcome the lack of a complete response to dasatinib. These findings strengthen the importance of BCR-ABL1 mutational screening in Ph+ patients, particularly for those who do not achieve complete molecular remission.

Lenis-Rojas, OA, Robalo MP, Tomaz AI, Carvalho A, Fernandes AR, Marques F, Folgueira M, Yanez J, Vazquez-Garcia D, Lopez Torres M, Fernandez A, Fernandez JJ.  2018.  Ru(II)( p-cymene) Compounds as Effective and Selective Anticancer Candidates with No Toxicity in Vivo, 2018. Inorg Chem. 57(21):13150-13166. AbstractWebsite

Ruthenium(II) complexes are currently considered a viable alternative to the widely used platinum complexes as efficient anticancer agents. We herein present the synthesis and characterization of half-sandwich ruthenium compounds with the general formula [Ru( p-cymene)(L-N,N)Cl][CF3SO3] (L = 3,6-di-2-pyridyl-1,2,4,5-tetrazine (1) 6,7-dimethyl-2,3-bis(pyridin-2-yl)quinoxaline (2)), which have been synthesized by substitution reactions from the precursor dimer [Ru( p-cymene)(Cl)(mu-Cl)]2 and were characterized by elemental analysis, mass spectrometry, (1)H NMR, UV-vis, and IR spectroscopy, conductivity measurements, and cyclic voltammetry. The molecular structure for complex 2 was determined by single-crystal X-ray diffraction. The cytotoxic activity of these compounds was evaluated against human tumor cells, namely ovarian carcinoma A2780 and breast MCF7 and MDAMB231 adenocarcinoma cells, and against normal primary fibroblasts. Whereas the cytotoxic activity of 1 is moderate, IC50 values found for 2 are among the lowest previously reported for Ru( p-cymene) complexes. Both compounds present no cytotoxic effect in normal human primary fibroblasts when they are used at the IC50 concentration in A2780 and MCF7 cancer cells. Their antiproliferative capacity is associated with a combined mechanism of apoptosis and autophagy. A strong interaction with DNA was observed for both with a binding constant value of the same magnitude as that of the classical intercalator [Ru(phen)2(dppz)](2+). Both complexes bind to human serum albumin with moderate to strong affinity, with conditional binding constants (log Kb) of 4.88 for complex 2 and 5.18 for complex 1 in 2% DMSO/10 mM Hepes pH7.0 medium. The acute toxicity was evaluated in zebrafish embryo model using the fish embryo acute toxicity test (FET). Remarkably, our results show that compounds 1 and 2 are not toxic/lethal even at extremely high concentrations. The novel compounds reported herein are highly relevant antitumor metallodrug candidates, given their in vitro cytotoxicity toward cancer cells and the lack of in vivo toxicity.

2017
Lenis-Rojas, OA, Roma-Rodrigues C, Fernandes AR, Marques F, Pérez-Fernández D, Guerra-Varela J, Sánchez L, Vázquez-García D, López-Torres M, Fernández A, Fernández JJ.  2017.  Dinuclear RuII(bipy)2 Derivatives: Structural, Biological, and in Vivo Zebrafish Toxicity Evaluation, 2017. Inorganic ChemistryInorganic Chemistry. 56(12):7127-7144.: American Chemical Society AbstractWebsite

Ruthenium-based drugs exhibit interesting properties as potential anticancer pharmaceuticals. We herein present the synthesis and characterization of a new family of ruthenium complexes with formulas [{Ru(bipy)2}2(μ-L)][CF3SO3]4 (L = bptz, 1a) and [{Ru(bipy)2}2(μ-L)][CF3SO3]2 (L = arphos, 2a; dppb, 3a; dppf, 4a), which were synthesized from the Ru(II) precursor compound cis-Ru(bipy)2Cl2. The complexes were characterized by elemental analysis, mass spectrometry, 1H and 31P{1H} NMR, IR spectroscopy, and conductivity measurements. The molecular structures for three Ru(II) compounds were determined by single-crystal X-ray diffraction. The newly developed compounds interact with CT-DNA by intercalation, in particular, 2a, 3a, and 4a, which also seemed to induce some extent of DNA degradation. This effect seemed to be related with the formation of reactive oxygen species. The cytotoxic activity was evaluated against A2780, MCF7, and MDAMB231 human tumor cells. Compounds 2a and 4a were the most cytotoxic with activity compared to cisplatin (∼2 μM, 72 h) in the A2780 cisplatin sensitive cells. All the compounds induced A2780 cell death by apoptosis, however, to a lesser extent for compounds 4a and 2a. For these compounds, the mechanism of cell death in addition to apoptosis seemed to involve autophagy. In vivo toxicity was evaluated using the zebrafish embryo model. LC50 estimates varied from 5.397 (3a) to 39.404 (1a) mg/L. Considering the in vivo toxicity in zebrafish embryos and the in vitro cytotoxicity in cancer cells, compound 1a seems to be the safest having no effect on dechirionation and presenting a good antiproliferative activity against ovarian carcinoma cells.Ruthenium-based drugs exhibit interesting properties as potential anticancer pharmaceuticals. We herein present the synthesis and characterization of a new family of ruthenium complexes with formulas [{Ru(bipy)2}2(μ-L)][CF3SO3]4 (L = bptz, 1a) and [{Ru(bipy)2}2(μ-L)][CF3SO3]2 (L = arphos, 2a; dppb, 3a; dppf, 4a), which were synthesized from the Ru(II) precursor compound cis-Ru(bipy)2Cl2. The complexes were characterized by elemental analysis, mass spectrometry, 1H and 31P{1H} NMR, IR spectroscopy, and conductivity measurements. The molecular structures for three Ru(II) compounds were determined by single-crystal X-ray diffraction. The newly developed compounds interact with CT-DNA by intercalation, in particular, 2a, 3a, and 4a, which also seemed to induce some extent of DNA degradation. This effect seemed to be related with the formation of reactive oxygen species. The cytotoxic activity was evaluated against A2780, MCF7, and MDAMB231 human tumor cells. Compounds 2a and 4a were the most cytotoxic with activity compared to cisplatin (∼2 μM, 72 h) in the A2780 cisplatin sensitive cells. All the compounds induced A2780 cell death by apoptosis, however, to a lesser extent for compounds 4a and 2a. For these compounds, the mechanism of cell death in addition to apoptosis seemed to involve autophagy. In vivo toxicity was evaluated using the zebrafish embryo model. LC50 estimates varied from 5.397 (3a) to 39.404 (1a) mg/L. Considering the in vivo toxicity in zebrafish embryos and the in vitro cytotoxicity in cancer cells, compound 1a seems to be the safest having no effect on dechirionation and presenting a good antiproliferative activity against ovarian carcinoma cells.

Mendes, R, Pedrosa P, Lima JC, Fernandes AR, Baptista PV.  2017.  Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles, 2017. 7(1):10872. AbstractWebsite

Photothermal Therapy (PTT) impact in cancer therapy has been increasing due to the enhanced photothermal capabilities of a new generation of nanoscale photothermal agents. Among these nanoscale agents, gold nanoshells and nanorods have demonstrated optimal properties for translation of near infra-red radiation into heat at the site of interest. However, smaller spherical gold nanoparticles (AuNPs) are easier to produce, less toxic and show improved photoconversion capability that may profit from the irradiation in the visible via standard surgical green lasers. Here we show the efficient light-to-heat conversion of spherical 14 nm AuNPs irradiated in the visible region (at the surface plasmons resonance peak) and its application to selectively obliterate cancer cells. Using breast cancer as model, we show a synergistic interaction between heat (photoconversion at 530 nm) and cytotoxic action by doxorubicin with clear advantages to those of the individual therapy approaches.

2016
Lenis-Rojas, OA, Fernandes AR, Roma-Rodrigues C, Baptista PV, Marques F, Perez-Fernandez D, Guerra-Varela J, Sanchez L, Vazquez-Garcia D, Torres LM, Fernandez A, Fernandez JJ.  2016.  Heteroleptic mononuclear compounds of ruthenium(ii): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos, 2016. Dalton Transactions. 45(47):19127-19140.: The Royal Society of Chemistry AbstractWebsite

The limitations of platinum complexes in cancer treatment have motivated the extensive investigation into other metal complexes such as ruthenium. We herein present the synthesis and characterization of a new family of ruthenium compounds 1a-5a with the general formula [Ru(bipy)2L][CF3SO3]2 (bipy = 2,2[prime or minute]-bipyridine; L = bidentate ligand: N,N; N,P; P,P; P,As) which have been characterized by elemental analysis, ES-MS, 1H and 31P-{1H} NMR, FTIR and conductivity measurements. The molecular structures of four Ru(ii) complexes were determined by single crystal X-ray diffraction. All compounds displayed moderate cytotoxic activity in vitro against human A2780 ovarian, MCF7 breast and HCT116 colorectal tumor cells. Compound 5a was the most cytotoxic compound against A2780 and MCF7 tumor cells with an IC50 of 4.75 +/- 2.82 [small mu ]M and 20.02 +/- 1.46 [small mu ]M, respectively. The compounds showed no cytotoxic effect on normal human primary fibroblasts but rather considerable selectivity for A2780, MCF7 and HCT116 tumor cells. All compounds induce apoptosis and autophagy in A2780 ovarian carcinoma cells and some nuclear DNA fragmentation. All compounds interact with CT-DNA with intrinsic binding constants in the order 1a > 4a > 2a > 3a > 5a. The observed hyperchromic effect may be due to the electrostatic interaction between positively charged cations and the negatively charged phosphate backbone at the periphery of the double helix-CT-DNA. Interestingly, compound 1a shows a concentration dependent DNA double strand cleavage. In addition in vivo toxicity has been evaluated on zebrafish embryos unveiling the differential toxicity between the compounds, with LC50 ranging from 8.67 mg L-1 for compound 1a to 170.30 mg L-1 for compound 2a.

Vinhas, R, Correia C, Ribeiro P, Lourenço A, de Sousa AB, Fernandes AR, Baptista PV.  2016.  Colorimetric assessment of BCR-ABL1 transcripts in clinical samples via gold nanoprobes. Analytical and Bioanalytical Chemistry. 408(19):5277–5284. AbstractWebsite

Gold nanoparticles functionalized with thiolated oligonucleotides (Au-nanoprobes) have been used in a range of applications for the detection of bioanalytes of interest, from ions to proteins and DNA targets. These detection strategies are based on the unique optical properties of gold nanoparticles, in particular, the intense color that is subject to modulation by modification of the medium dieletric. Au-nanoprobes have been applied for the detection and characterization of specific DNA sequences of interest, namely pathogens and disease biomarkers. Nevertheless, despite its relevance, only a few reports exist on the detection of RNA targets. Among these strategies, the colorimetric detection of DNA has been proven to work for several different targets in controlled samples but demonstration in real clinical bioanalysis has been elusive. Here, we used a colorimetric method based on Au-nanoprobes for the direct detection of the e14a2 BCR-ABL fusion transcript in myeloid leukemia patient samples without the need for retro-transcription. Au-nanoprobes directly assessed total RNA from 38 clinical samples, and results were validated against reverse transcription-nested polymerase chain reaction (RT-nested PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The colorimetric Au-nanoprobe assay is a simple yet reliable strategy to scrutinize myeloid leukemia patients at diagnosis and evaluate progression, with obvious advantages in terms of time and cost, particularly in low- to medium-income countries where molecular screening is not routinely feasible.

Cordeiro, M, Carlos FF, Pedrosa P, Lopez A, Baptista PV.  2016.  Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics. 6(4):43. AbstractWebsite

The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted developments in the exploration of biomolecular interactions with AuNP-containing systems, in particular for biomedical applications in diagnostics. These systems show great promise in improving sensitivity, ease of operation and portability. Despite this endeavor, most platforms have yet to reach maturity and make their way into clinics or points of care (POC). Here, we present an overview of emerging and available molecular diagnostics using AuNPs for biomedical sensing that are currently being translated to the clinical setting.

Corvo, L, Mendo AS, Figueiredo S, Larguinho M, Gaspar R, Baptista PV, Fernandes AR.  2016.  Liposomes as delivery system of a Sn(IV) compound for cancer therapy. Pharmaceutical Research. 6(33):1351-8. AbstractWebsite

PROPOSE:
Tin complexes demonstrate antiproliferative activities in some case higher than cisplatin, with IC50 at the low micromolar range. We have previously showed that the cyclic trinuclear complex of Sn(IV) bearing an aromatic oximehydroxamic acid group [nBu2Sn(L)]3 (L=N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) (MG85) shows high anti-proliferative activity, induces apoptosis and oxidative stress, and causes destabilization of tubulin microtubules, particularly in colorectal carcinoma cells. Despite the great efficacy towards cancer cells, this complex still shows some cytotoxicity to healthy cells. Targeted delivery of this complex specifically towards cancer cells might foster cancer treatment.
METHODS:
MG85 complex was encapsulated into liposomal formulation with and without an active targeting moiety and cancer and healthy cells cytotoxicity was evaluated.
RESULTS:
Encapsulation of MG85 complex in targeting PEGylated liposomes enhanced colorectal carcinoma (HCT116) cancer cell death when compared to free complex, whilst decreasing cytotoxicity in non-tumor cells. Labeling of liposomes with Rhodamine allowed assessing internalization in cells, which showed significant cell uptake after 6 h of incubation. Cetuximab was used as targeting moiety in the PEGylated liposomes that displayed higher internalization rate in HCT116 cells when compared with non-targeted liposomes, which seems to internalize via active binding of Cetuximab to cells.
CONCLUSIONS:
The proposed formulation open new avenues in the design of innovative transition metal-based vectorization systems that may be further extended to other novel metal complexes towards the improvement of their anti-cancer efficacy, which is usually hampered by solubility issues and/or toxicity to healthy tissues.

Silva, M, Silva Z, Marques G, Ferro T, Gonçalves M, Monteiro M, van Vliet SJ, Mohr E, Lino AC, Fernandes AR, Lima FA, van Kooyk Y, Matos T, Tadokoro CE, Videira PA.  2016.  Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses. Oncotarget . AbstractWebsite

Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280–288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs’ ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy.

2015
Vinhas, R, Tolmatcheva A, Canto R, Ribeiro P, Lourenço A, de Sousa AB, Baptista PV, Fernandes AR.  2015.   A novel mutation in the CEBPA gene in a patient with acute myeloid leukemia. Leukimia Lymphoma. :711-713.Website
Mendo, AS, Figueiredo S, Roma-Rodrigues C, Videira PA, Ma Z, Diniz M, Larguinho M, Costa PM, Pombeiro AJL, Baptista PV, Fernandes AR.  2015.   Characterization of antiproliferative potential and biological targets of a copper complex containing 4’-phenyl terpyridine. JBIC . (20):935. AbstractWebsite

Several copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)2}L](NO3)2 incorporating the ligand 4′-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.

2014
F. S. Silva, T, M. D. R. S. Martins L, Guedes da Silva FMC, Kuznetsov ML, Fernandes AR, Silva A, Pan C-J, Lee J-F, Hwang B-J, J. L. Pombeiro A.  2014.  Cobalt Complexes with Pyrazole Ligands as Catalyst Precursors for the Peroxidative Oxidation of Cyclohexane: X-ray Absorption Spectroscopy Studies and Biological Applications, 2014/04/01. Chemistry – An Asian Journal. 9(4):1132-1143.: WILEY-VCH Verlag AbstractWebsite
n/a
Silva, J, Rodrigues AS, Videira PA, Lasri J, Charmier AJ, Pombeiro AJL, Fernandes AR.  2014.  Characterization of the antiproliferative potential and biological targets of a trans ketoimine platinum complex. Inorg Chim Acta. 423:156-167.
Silva, TF, Martins LM, Guedes da Silva MF, Kuznetsov ML, Fernandes AR, Silva A, Pan CJ, Lee JF, Hwang BJ, Pombeiro AJ.  2014.  Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications. Chem Asian J. 9(4):1132-43.14silvacaj.pdf
Conde, J, Larguinho M, Cordeiro A, Raposo LR, Costa PM, Santos S, Diniz MS, Fernandes AR, Baptista PV.  2014.  Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology. 8(5):521-32.14condenantox.pdf14condenantoxsuppl.pdf
Luis, DV, Silva J, Tomaz AI, de Almeida RF, Larguinho M, Baptista PV, Martins LM, Silva TF, Borralho PM, Rodrigues CM, Rodrigues AS, Pombeiro AJ, Fernandes AR.  2014.  Insights into the mechanisms underlying the antiproliferative potential of a Co(II) coordination compound bearing 1,10-phenanthroline-5,6-dione: DNA and protein interaction studies. J Biol Inorg Chem. 19(6):787-803.14luisjbic.pdf
Figueiredo, S, Cabral R, Luis D, Fernandes AR, Baptista PV.  2014.  Integration of Gold nanoparticles and liposomes for combined anti-cancer drug delivery. Nanomedicine. (Alexander Seifalian, Achala de Mel, Deepak M. Kalaskar, Eds.)., Manchester: One Central Press (OCP)conjugation_of_gold_nanoparticles_and_liposomes_for_combined_vehicles_of_drug_delivery_in_cancer.pdf
F. S. Silva, T, M. D. R. S. Martins L, Guedes da Silva FMC, Kuznetsov ML, Fernandes AR, Silva A, Pan C-J, Lee J-F, Hwang B-J, J. L. Pombeiro A.  2014.  Cobalt Complexes with Pyrazole Ligands as Catalyst Precursors for the Peroxidative Oxidation of Cyclohexane: X-ray Absorption Spectroscopy Studies and Biological Applications. Chemistry – An Asian Journal. 9:1132–1143., Number 4: WILEY-VCH Verlag AbstractWebsite
n/a
2013
Silva, A, Luis D, Santos S, Silva J, Mendo AS, Coito L, Silva TF, da Silva MFG, Martins LM, Pombeiro AJ, Borralho PM, Rodrigues CM, Cabral MG, Videira PA, Monteiro C, Fernandes AR.  2013.  Biological characterization of the antiproliferative potential of Co(II) and Sn(IV) coordination compounds in human cancer cell lines: a comparative proteomic approach. Drug Metabol Drug Interact. 28(3):167-76.13silvadmdi.pdf