Publications

Export 24 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Beola, L, Asin L, Roma-Rodrigues C, Fernandez-Afonso Y, Fratila RM, Serantes D, Ruta S, Chantrell RW, Fernandes AR, Baptista PV, de la Fuente JM, Grazu V, Gutierrez L.  2020.  The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment, 2020. ACS Appl Mater Interfaces. 12(39):43474-43487. AbstractWebsite

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.

Amendoeira, A, García LR, Fernandes AR, Baptista PV.  2020.  Light Irradiation of Gold Nanoparticles Toward Advanced Cancer Therapeutics, 2020. 3(1):1900153. AbstractWebsite

Abstract Cancer is one of the leading causes of death in the world. To challenge this epidemic, there are growing demands for the development of new advanced and targeted therapeutics capable of effectively tackling cancer cells with improved selectivity. Nanomedicine has put forward several innovative therapeutics toward improving therapeutic efficacy while decreasing the deleterious side effects of current chemotherapy. Multifunctional gold nanoparticles (AuNPs) have been at the core of a plethora of advanced therapeutic strategies that provide selective targeting with their unique optical properties, capable to interact with the light of specific wavelength to deliver therapy with tremendous spatiotemporal precision. AuNPs have been exploited as photodynamic and photothermal therapeutic agents alone or in combination with other cancer treatment modalities with other cancer applications. Due to their exceptional physicochemical properties, they have been proven efficacious allies for photodynamic therapy and for photothermal therapy regimens. Herein, the rapidly progressing literature related to the use of these promising strategies against cancer is discussed, highlighting their possible future clinical translation.

2019
Sutradhar, M, Alegria ECBA, Ferretti F, Raposo LR, Guedes da Silva MFC, Baptista PV, Fernandes AR, Pombeiro AJL.  2019.  Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymers, 2019. J Inorg Biochem. 200:110811. AbstractWebsite

The syntheses of the heterometallic sodium and potassium-dioxidovanadium 2D polymers, [NaVO2(1kappaNOO';2kappaO"-L)(H2O)]n(1) and [KVO2(1kappaNOO';2kappaO';3kappaO"-L)(EtOH)]n(2) (where the kappa notation indicates the coordinating atoms of the polydentate ligand L) derived from (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H2L) are reported. The polymers were characterized by IR, NMR, elemental analysis and single crystal X-ray diffraction analysis. The antiproliferative potential of 1 and 2 was examined towards four human cancer cell lines (ovarian carcinoma, A2780, colorectal carcinoma, HCT116, prostate carcinoma, PC3 and breast adenocarcinoma, MCF-7cell lines) and normal human fibroblasts. Complex 1 and 2 showed the highest cytotoxic activity against A2780 cell line (IC50 8.2 and 11.3muM, respectively) with 1>2 and an IC50 in the same range as cisplatin (IC50 3.4muM; obtained in the same experimental conditions) but, interestingly, with no cytotoxicity to healthy human fibroblasts for concentrations up to 75muM. This high cytotoxicity of 1 in ovarian cancer cells and its low cytotoxicity in healthy cells demonstrates its potential for further biological studies. Our results suggest that both complexes induce ovarian carcinoma cell death via apoptosis and autophagy, but autophagy is the main biological cause of the reduction of viability observed and that ROS (reactive oxygen species) may play an important role in triggering cell death.

Alves-Barroco, C, Roma-Rodrigues C, Balasubramanian N, Guimaraes MA, Ferreira-Carvalho BT, Muthukumaran J, Nunes D, Fortunato E, Martins R, Santos-Silva T, Figueiredo AMS, Fernandes AR, Santos-Sanches I.  2019.  Biofilm development and computational screening for new putative inhibitors of a homolog of the regulatory protein BrpA in Streptococcus dysgalactiae subsp. dysgalactiae, 2019. Int J Med Microbiol. 309(3-4):169-181. AbstractWebsite

Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), a Lancefield group C streptococci (GCS), is a frequent cause of bovine mastitis. This highly prevalent disease is the costliest in dairy industry. Adherence and biofilm production are important factors in streptoccocal pathogenesis. We have previously described the adhesion and internalization of SDSD isolates in human cells and now we describe the biofilm production capability of this bacterium. In this work we integrated microbiology, imaging and computational methods to evaluate the biofilm production capability of SDSD isolates; to assess the presence of biofilm regulatory protein BrpA homolog in the biofilm producers; and to predict a structural model of BrpA-like protein and its binding to putative inhibitors. Our results show that SDSD isolates form biofilms on abiotic surface such as glass (hydrophilic) and polystyrene (hydrophobic), with the strongest biofilm formation observed in glass. This ability was mainly associated with a proteinaceous extracellular matrix, confirmed by the dispersion of the biofilms after proteinase K and trypsin treatment. The biofilm formation in SDSD isolates was also confirmed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Under SEM observation, VSD16 isolate formed cell aggregates during biofilm growth while VSD9 and VSD10 formed smooth and filmy layers. We show that brpA-like gene is present and expressed in SDSD biofilm-producing isolates and its expression levels correlated with the biofilm production capability, being more expressed in the late exponential phase of planktonic growth compared to biofilm growth. Fisetin, a known biofilm inhibitor and a putative BrpA binding molecule, dramatically inhibited biofilm formation by the SDSD isolates but did not affect planktonic growth, at the tested concentrations. Homology modeling was used to predict the 3D structure of BrpA-like protein. Using high throughput virtual screening and molecular docking, we selected five ligand molecules with strong binding affinity to the hydrophobic cleft of the protein, making them potential inhibitor candidates of the SDSD BrpA-like protein. These results warrant further investigations for developing novel strategies for SDSD anti-biofilm therapy.

Bravo, C, Robalo PM, Marques F, Fernandes AR, Sequeira DA, M. Piedade FM, Garcia HM, de Brito MVJ, Morais TS.  2019.  First heterobimetallic Cu(i)–dppf complexes designed for anticancer applications: synthesis, structural characterization and cytotoxicity, 2019. New Journal of Chemistry. 43(31):12308-12317. AbstractWebsite

A new family of eight heterobimetallic Cu(i)–dppf complexes of general formula [Cu(dppf)L][BF4] with dppf = 1,1′-bis(diphenylphosphino)ferrocene and L representing N,N-, N,O- and N,S-heteroaromatic bidentate ligands have been synthesized and fully characterized by classical analytical, spectroscopic and electrochemical methods. The single crystal structures of [Cu(dppf)(pBI)][BF4] (6), [Cu(dppf)(dpytz)][BF4] (7) and [Cu(dppf)(5-Aphen)][BF4] (8) complexes (where pBI = 2-(2-pyridyl)benzimidazole, dpytz = 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine and 5-Aphen = 1,10-phenanthrolin-5-amine) were determined by X-ray diffraction studies. Cytotoxicity of all complexes was evaluated in two human breast adenocarcinoma cell lines (MCF7 and MDAMB231). All the complexes exhibit high cytotoxicity against both human breast cancer cells with IC50 values far lower than those found for the antitumor drug cisplatin in the same cell lines. The IC50 values on primary healthy fibroblasts are of the same order of magnitude as those found for the tumoral cells.

Sutradhar, M, Fernandes AR, Paradinha F, Rijo P, Garcia C, Roma-Rodrigues C, Pombeiro AJL, Charmier AJ.  2019.  A new Cu(II)-O-Carvacrotinate complex: Synthesis, characterization and biological activity, 2019. J Inorg Biochem. 190:31-37. AbstractWebsite

Herein, we report the first example of the synthesis of a novel type of Cu(II) complex based on a natural product ligand derived from carvacrol. The copper(II) complex [Cu(DCA)2(EtOH)]2.2EtOH (1, HDCAO-carvacrotinic acid) has been synthesized and characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray analysis. Complex 1 and the carvacrotinic acid (2, HDCA) have been studied towards their antimicrobial and antiproliferative activities. For both compounds the antimicrobial activity was assessed against a panel of Gram-positive and Gram-negative bacteria and yeasts. The microdilution method allowed the determination of their Minimum Inhibitory Concentration (MIC) and minimum bactericidal concentration (MBC). Interestingly, both compounds seem to be more effective on yeasts rather than bacteria especially against C. albicans. Regarding the antimicrobial properties, the compounds appear to present a bacteriostatic behaviour, rather than bactericide. The antiproliferative effect of complex 1, O-carvacrotinic acid (HDCA) 2 and carvacrol (CA) 3 used as a reference to compare their antitumoral activity, was examined in 4 human tumor cell lines (ovarian carcinoma (A2780), colorectal carcinoma (HCT116), lung adenocarcinoma (A549) and breast adenocarcinoma (MCF7)) and in normal human primary fibroblasts. Complex 1 exhibits a moderate cytotoxic activity against ovarian carcinoma cells (A2780), with no cytotoxicity in normal primary human fibroblasts. The moderate cytotoxicity observed in A2780 cells was due to an increase of cell apoptosis.

Kourmentza, C, Araujo D, Sevrin C, Roma-Rodriques C, Lia Ferreira J, Freitas F, Dionisio M, Baptista PV, Fernandes AR, Grandfils C, Reis MAM.  2019.  Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product, 2019. Bioresour Technol. 281:31-40. AbstractWebsite

While screening for polyhydroxyalkanoate (PHA) producing strains, using glycerol rich by-product as carbon source, it was observed that extracellular polymers were also secreted into the culture broth. The scope of this study was to characterize both intracellular and extracellular polymers, produced by Pseudomonas putida NRRL B-14875 and Pseudomonas chlororaphis DSM 50083, mostly focusing on those novel extracellular polymers. It was found that they fall into the class of bioemulsifiers (BE), as they showed excellent emulsion stability against different hydrocarbons/oils at various pH conditions, temperature and salinity concentrations. Cytotoxicity tests revealed that BE produced by P. chlororaphis inhibited the growth of highly pigmented human melanoma cells (MNT-1) by 50% at concentrations between 150 and 200mug/mL, while no effect was observed on normal skin primary keratinocytes and melanocytes. This is the first study reporting mcl-PHA production by P. putida NRRL B-14785 and bioemulsifier production from both P. putida and P. chlororaphis strains.

Almeida, J, Roma-Rodrigues C, Mahmoud AG, Guedes da Silva MFC, Pombeiro AJL, Martins LMDRS, Baptista PV, Fernandes AR.  2019.  Structural characterization and biological properties of silver(I) tris(pyrazolyl)methane sulfonate, 2019. J Inorg Biochem. 199:110789. AbstractWebsite

The water-soluble 1D helical coordination polymer [Ag(Tpms)]n (1) [Tpms=tris(pyrazolyl)methane sulfonate, (-)O3SC(pz)3; pz=pyrazolyl] was synthesized and fully characterized, its single-crystal X-ray diffraction analysis revealing the ligand acting as a bridging chelate N3-donor ligand. The antiproliferative potential of 1 was performed on two human tumour cell lines, A2780 and HCT116, and in normal fibroblasts, with a much higher effect in the former cell line (IC50 of 0.04muM) as compared to the latter cell line and to normal fibroblasts. Compound 1 does not alter cell cycle progression but interferes with the adherence of A2780 cells triggering cell apoptosis. Apoptosis appears to occur via the extrinsic pathway (no changes in mitochondria membrane potential, reactive oxygen species (ROS) and pro-apoptotic (B-cell lymphoma 2 (BCL-2) associated protein (BAX))/anti-apoptotic (BCL-2) ratio) being this hypothesis also supported by the presence of silver mainly in the supernatants of A2780 cells. Results also indicated that cell death via autophagy was triggered. Proteomic analysis allowed us to confirm that compound 1 is able to induce a stress response in A2780 cells that is related with its antiproliferative activity and the trigger of apoptosis.

2018
Gomes, SE, Pereira DM, Roma-Rodrigues C, Fernandes AR, Borralho PM, Rodrigues CMP.  2018.  Convergence of miR-143 overexpression, oxidative stress and cell death in HCT116 human colon cancer cells, 2018. PLoS One. 13(1):e0191607. AbstractWebsite

MicroRNAs (miRNAs) regulate a wide variety of biological processes, including tumourigenesis. Altered miRNA expression is associated with deregulation of signalling pathways, which in turn cause abnormal cell growth and de-differentiation, contributing to cancer. miR-143 and miR-145 are anti-tumourigenic and influence the sensitivity of tumour cells to chemotherapy and targeted therapy. Comparative proteomic analysis was performed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145. Immunoblotting analysis validated the proteomic data in stable and transient miRNA overexpression conditions in human colon cancer cells. We show that approximately 100 proteins are differentially expressed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145 compared to Empty control cells. Further, Gene Ontology and pathway enrichment analysis indicated that proteins involved in specific cell signalling pathways such as cell death, response to oxidative stress, and protein folding might be modulated by these miRNAs. In particular, antioxidant enzyme superoxide dismutase 1 (SOD1) was downregulated by stable expression of either miR-143 or miR-145. Further, SOD1 gain-of-function experiments rescued cells from miR-143-induced oxidative stress. Moreover, miR-143 overexpression increased oxaliplatin-induced apoptosis associated with reactive oxygen species generation, which was abrogated by genetic and pharmacological inhibition of oxidative stress. Overall, miR-143 might circumvent resistance of colon cancer cells to oxaliplatin via increased oxidative stress in HCT116 human colon cancer cells.

Das, K, Beyene BB, Datta A, Garribba E, Roma-Rodrigues C, Silva A, Fernandes AR, Hung C-H.  2018.  EPR and electrochemical interpretation of bispyrazolylacetate anchored Ni(ii) and Mn(ii) complexes: cytotoxicity and anti-proliferative activity towards human cancer cell lines, 2018. New Journal of Chemistry. 42(11):9126-9139. AbstractWebsite

Two mononuclear NiII and MnII compounds, [Ni(bdtbpza)2(CH3OH)4] (1) and [Mn(bdtbpza)2(CH3OH)2(H2O)2] (2), are afforded by employing a ‘scorpionate’ type precursor [bdtbpza = bis(3,5-di-t-butylpyrazol-1-yl)acetate]. The single crystal X-ray structure reveals that the central metal ion (NiII for 1 and MnII for 2) is surrounded by a pair of Oacetate atoms of two bis(pyrazol-1-yl)acetate units, while four OMeOH donors for 1 and two OMeOH plus two Owater for 2 complete the first coordination sphere. Thus, both compounds exhibit a slightly distorted octahedral geometry possessing an O6 coordination environment. EPR spectra of CuII-doped 1 and of 2 recorded on the polycrystalline solids and in organic solution confirm the octahedral geometry around the metal ions and the binding of six oxygen atoms. The electrochemical study of compounds 1 and 2 shows that one electron reduction of MnII occurs at a more negative potential than NiII, indicating a lower tendency of reduction for Mn than Ni. Both compounds displayed a high cytotoxic activity against A2780 ovarian carcinoma cells and no cytotoxic activity in normal primary human fibroblasts for concentrations up to 55 μM. Notwithstanding, compound 1 is found to be the most cytotoxic towards A2780 cancer cells. The cytotoxic activity of compound 1 is correlated with the induction of apoptosis associated with a higher mitochondria dysfunction and autophagy cell death. In addition, the compounds can induce oxidative damage leading to ROS accumulation. Overall, the data presented here demonstrate that 1 has potential for further in vivo studies aiming at its future application in ovarian cancer therapy.

Ribeiro, APC, Anbu S, Alegria ECBA, Fernandes AR, Baptista PV, Mendes R, Matias AS, Mendes M, Guedes da Silva MFC, Pombeiro AJL.  2018.  Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles, 2018. Biomed Pharmacother. 101:137-144. AbstractWebsite

Silver nanoparticles (AgNPs) were prepared by GREEN chemistry relying on the reduction of AgNO3 by phytochemicals present in black tea extract. AgNPs were fully characterized by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy ((UV-vis)), X-ray diffraction (XRD) and energy dispersive absorption spectroscopy (EDS). The synthesized AgNPs induced a decrease of the cell viability in a dose-dependent manner with a low IC50 (0.5+/-0.1muM) for an ovarian carcinoma cell line (A2780) compared to primary human fibroblasts (IC50 5.0+/-0.1muM). The DNA binding capability of CT (calf thymus) DNA was investigated using electronic absorption and fluorescence spectroscopies, circular dichroism and viscosity titration methods. Additionally, the AgNPs strongly quench the intrinsic fluorescence of BSA, as determined by synchronous fluorescence spectra.

Morais, TS, Jousseaume Y, MF PM, Roma-Rodrigues C, Fernandes AR, Marques F, Villa de Brito MJ, Garcia MH.  2018.  Important cytotoxic and cytostatic effects of new copper(i)-phosphane compounds with N,N, N,O and N,S bidentate ligands, 2018. Dalton Trans. 47(23):7819-7829. AbstractWebsite

A family of six phosphane Cu(i) complexes bearing N,N, N,O and N,S bidentate ligands was synthesized. All the compounds were fully characterized by classical analytical and spectroscopic methods, and five of them were also characterized by X-ray diffraction studies. All the compounds exhibit high cytotoxicity against the human breast cancer cell line MCF7 with IC50 values far lower than those found for cisplatin, a current chemotherapeutic in clinical use. Compounds 1[combining low line] and 3[combining low line] induce cell cycle arrest in the G2/M phase and cell death by apoptosis. The cytotoxic and cytostatic effects of these compounds on MCF7 cells suggest that they are suitable for further in vivo studies with breast cancer models.

2017
Lenis-Rojas, OA, Roma-Rodrigues C, Fernandes AR, Marques F, Pérez-Fernández D, Guerra-Varela J, Sánchez L, Vázquez-García D, López-Torres M, Fernández A, Fernández JJ.  2017.  Dinuclear RuII(bipy)2 Derivatives: Structural, Biological, and in Vivo Zebrafish Toxicity Evaluation, 2017. Inorganic ChemistryInorganic Chemistry. 56(12):7127-7144.: American Chemical Society AbstractWebsite

Ruthenium-based drugs exhibit interesting properties as potential anticancer pharmaceuticals. We herein present the synthesis and characterization of a new family of ruthenium complexes with formulas [{Ru(bipy)2}2(μ-L)][CF3SO3]4 (L = bptz, 1a) and [{Ru(bipy)2}2(μ-L)][CF3SO3]2 (L = arphos, 2a; dppb, 3a; dppf, 4a), which were synthesized from the Ru(II) precursor compound cis-Ru(bipy)2Cl2. The complexes were characterized by elemental analysis, mass spectrometry, 1H and 31P{1H} NMR, IR spectroscopy, and conductivity measurements. The molecular structures for three Ru(II) compounds were determined by single-crystal X-ray diffraction. The newly developed compounds interact with CT-DNA by intercalation, in particular, 2a, 3a, and 4a, which also seemed to induce some extent of DNA degradation. This effect seemed to be related with the formation of reactive oxygen species. The cytotoxic activity was evaluated against A2780, MCF7, and MDAMB231 human tumor cells. Compounds 2a and 4a were the most cytotoxic with activity compared to cisplatin (∼2 μM, 72 h) in the A2780 cisplatin sensitive cells. All the compounds induced A2780 cell death by apoptosis, however, to a lesser extent for compounds 4a and 2a. For these compounds, the mechanism of cell death in addition to apoptosis seemed to involve autophagy. In vivo toxicity was evaluated using the zebrafish embryo model. LC50 estimates varied from 5.397 (3a) to 39.404 (1a) mg/L. Considering the in vivo toxicity in zebrafish embryos and the in vitro cytotoxicity in cancer cells, compound 1a seems to be the safest having no effect on dechirionation and presenting a good antiproliferative activity against ovarian carcinoma cells.Ruthenium-based drugs exhibit interesting properties as potential anticancer pharmaceuticals. We herein present the synthesis and characterization of a new family of ruthenium complexes with formulas [{Ru(bipy)2}2(μ-L)][CF3SO3]4 (L = bptz, 1a) and [{Ru(bipy)2}2(μ-L)][CF3SO3]2 (L = arphos, 2a; dppb, 3a; dppf, 4a), which were synthesized from the Ru(II) precursor compound cis-Ru(bipy)2Cl2. The complexes were characterized by elemental analysis, mass spectrometry, 1H and 31P{1H} NMR, IR spectroscopy, and conductivity measurements. The molecular structures for three Ru(II) compounds were determined by single-crystal X-ray diffraction. The newly developed compounds interact with CT-DNA by intercalation, in particular, 2a, 3a, and 4a, which also seemed to induce some extent of DNA degradation. This effect seemed to be related with the formation of reactive oxygen species. The cytotoxic activity was evaluated against A2780, MCF7, and MDAMB231 human tumor cells. Compounds 2a and 4a were the most cytotoxic with activity compared to cisplatin (∼2 μM, 72 h) in the A2780 cisplatin sensitive cells. All the compounds induced A2780 cell death by apoptosis, however, to a lesser extent for compounds 4a and 2a. For these compounds, the mechanism of cell death in addition to apoptosis seemed to involve autophagy. In vivo toxicity was evaluated using the zebrafish embryo model. LC50 estimates varied from 5.397 (3a) to 39.404 (1a) mg/L. Considering the in vivo toxicity in zebrafish embryos and the in vitro cytotoxicity in cancer cells, compound 1a seems to be the safest having no effect on dechirionation and presenting a good antiproliferative activity against ovarian carcinoma cells.

Sutradhar, M, Rajeshwari, Roy Barman T, Fernandes AR, Paradinha F, Roma-Rodrigues C, Guedes da Silva FMC, Pombeiro AJL.  2017.  Mixed ligand aroylhydrazone and N-donor heterocyclic Lewis base Cu(II) complexes as potential antiproliferative agents, 2017. 175:267-275. AbstractWebsite

A series of four mixed ligand aroylhydrazone and N-donor heterocyclic Lewis base Cu(II) complexes [CuL(X)]2 [L refers to the dianionic form of (5-bromo-2-hydroxybenzylidene)-2-hydroxybenzohydrazide; X=pyrazine (Pz; 1), pyridine (Py; 2), imidazole (Imz; 3) and 3-pyridinecarbonitrile (3-PyCN; 4)] has been synthesized and characterized by elemental analysis, various spectroscopic techniques and X-ray crystallography (for 1, 2 and 4). The antiproliferative effect of complexes 1–4 was examined in 4 human tumor cell lines (ovarian carcinoma (A2780), colorectal carcinoma (HCT116), lung adenocarcinoma (A549) and breast adenocarcinoma (MCF7)) and in normal human primary Fibroblasts. Complex 4 exhibits a high cytotoxic activity against ovarian and colorectal carcinoma cells (A2780, HCT116 respectively), with IC50 much lower than those for normal primary fibroblasts. Complex 4 could induce cell death via apoptosis but not autophagy in colorectal carcinoma cells.

2016
Lenis-Rojas, OA, Fernandes AR, Roma-Rodrigues C, Baptista PV, Marques F, Perez-Fernandez D, Guerra-Varela J, Sanchez L, Vazquez-Garcia D, Torres LM, Fernandez A, Fernandez JJ.  2016.  Heteroleptic mononuclear compounds of ruthenium(ii): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos, 2016. Dalton Transactions. 45(47):19127-19140.: The Royal Society of Chemistry AbstractWebsite

The limitations of platinum complexes in cancer treatment have motivated the extensive investigation into other metal complexes such as ruthenium. We herein present the synthesis and characterization of a new family of ruthenium compounds 1a-5a with the general formula [Ru(bipy)2L][CF3SO3]2 (bipy = 2,2[prime or minute]-bipyridine; L = bidentate ligand: N,N; N,P; P,P; P,As) which have been characterized by elemental analysis, ES-MS, 1H and 31P-{1H} NMR, FTIR and conductivity measurements. The molecular structures of four Ru(ii) complexes were determined by single crystal X-ray diffraction. All compounds displayed moderate cytotoxic activity in vitro against human A2780 ovarian, MCF7 breast and HCT116 colorectal tumor cells. Compound 5a was the most cytotoxic compound against A2780 and MCF7 tumor cells with an IC50 of 4.75 +/- 2.82 [small mu ]M and 20.02 +/- 1.46 [small mu ]M, respectively. The compounds showed no cytotoxic effect on normal human primary fibroblasts but rather considerable selectivity for A2780, MCF7 and HCT116 tumor cells. All compounds induce apoptosis and autophagy in A2780 ovarian carcinoma cells and some nuclear DNA fragmentation. All compounds interact with CT-DNA with intrinsic binding constants in the order 1a > 4a > 2a > 3a > 5a. The observed hyperchromic effect may be due to the electrostatic interaction between positively charged cations and the negatively charged phosphate backbone at the periphery of the double helix-CT-DNA. Interestingly, compound 1a shows a concentration dependent DNA double strand cleavage. In addition in vivo toxicity has been evaluated on zebrafish embryos unveiling the differential toxicity between the compounds, with LC50 ranging from 8.67 mg L-1 for compound 1a to 170.30 mg L-1 for compound 2a.

Martins, M, Baptista PV, Mendo AS, Correia C, Videira P, Rodrigues AS, Muthukumaran J, Santos-Silva T, Silva A, da Silva FGMC, Gigante J, Duarte A, Pombeiro AJL, Fernandes AR.  2016.   In vitro and in vivo biological characterization of the anti-proliferative potential of a cyclic trinuclear organotin(IV) complex. Molecular BioSystems. (12) AbstractWebsite

Identification of novel molecules that can selectively inhibit the growth of tumor cells, avoid causing side effects to patients and/or intrinsic or acquired resistance, usually associated with common chemotherapeutic agents, is of utmost importance. Organometallic compounds have gained importance in oncologic chemotherapy, such as organotin(IV) complexes. In this study, we assessed the anti-tumor activity of the cyclic trinuclear organotin(IV) complex with an aromatic oximehydroxamic acid group [nBu2Sn(L)]3(H2L = N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) – MG85 – and provided further characterization of its biological targets. We have previously shown the high anti-proliferative activity of this complex against human colorectal and hepatocellular carcinoma cell lines and lower cytotoxicity in neonatal non-tumor fibroblasts. MG85 induces tumor cell apoptosis and down-regulation of proteins related to tubulin dynamics (TCTP and COF1). Further characterization included the: (i) evaluation of interference in the cell cycle progression, including the expression of critical genes; (ii) affinity to DNA and the corresponding mode of binding; (iii) genotoxic potential in cells with deficient DNA repair pathways; and (iv) in vivo tumor reduction efficiency using mouse colorectal carcinoma xenografts.

Corvo, L, Mendo AS, Figueiredo S, Larguinho M, Gaspar R, Baptista PV, Fernandes AR.  2016.  Liposomes as delivery system of a Sn(IV) compound for cancer therapy. Pharmaceutical Research. 6(33):1351-8. AbstractWebsite

PROPOSE:
Tin complexes demonstrate antiproliferative activities in some case higher than cisplatin, with IC50 at the low micromolar range. We have previously showed that the cyclic trinuclear complex of Sn(IV) bearing an aromatic oximehydroxamic acid group [nBu2Sn(L)]3 (L=N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) (MG85) shows high anti-proliferative activity, induces apoptosis and oxidative stress, and causes destabilization of tubulin microtubules, particularly in colorectal carcinoma cells. Despite the great efficacy towards cancer cells, this complex still shows some cytotoxicity to healthy cells. Targeted delivery of this complex specifically towards cancer cells might foster cancer treatment.
METHODS:
MG85 complex was encapsulated into liposomal formulation with and without an active targeting moiety and cancer and healthy cells cytotoxicity was evaluated.
RESULTS:
Encapsulation of MG85 complex in targeting PEGylated liposomes enhanced colorectal carcinoma (HCT116) cancer cell death when compared to free complex, whilst decreasing cytotoxicity in non-tumor cells. Labeling of liposomes with Rhodamine allowed assessing internalization in cells, which showed significant cell uptake after 6 h of incubation. Cetuximab was used as targeting moiety in the PEGylated liposomes that displayed higher internalization rate in HCT116 cells when compared with non-targeted liposomes, which seems to internalize via active binding of Cetuximab to cells.
CONCLUSIONS:
The proposed formulation open new avenues in the design of innovative transition metal-based vectorization systems that may be further extended to other novel metal complexes towards the improvement of their anti-cancer efficacy, which is usually hampered by solubility issues and/or toxicity to healthy tissues.

Silva, M, Silva Z, Marques G, Ferro T, Gonçalves M, Monteiro M, van Vliet SJ, Mohr E, Lino AC, Fernandes AR, Lima FA, van Kooyk Y, Matos T, Tadokoro CE, Videira PA.  2016.  Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses. Oncotarget . AbstractWebsite

Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280–288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs’ ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy.

2014
F. S. Silva, T, M. D. R. S. Martins L, Guedes da Silva FMC, Kuznetsov ML, Fernandes AR, Silva A, Pan C-J, Lee J-F, Hwang B-J, J. L. Pombeiro A.  2014.  Cobalt Complexes with Pyrazole Ligands as Catalyst Precursors for the Peroxidative Oxidation of Cyclohexane: X-ray Absorption Spectroscopy Studies and Biological Applications, 2014/04/01. Chemistry – An Asian Journal. 9(4):1132-1143.: WILEY-VCH Verlag AbstractWebsite
n/a
Silva, TF, Martins LM, Guedes da Silva MF, Kuznetsov ML, Fernandes AR, Silva A, Pan CJ, Lee JF, Hwang BJ, Pombeiro AJ.  2014.  Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications. Chem Asian J. 9(4):1132-43.14silvacaj.pdf
F. S. Silva, T, M. D. R. S. Martins L, Guedes da Silva FMC, Kuznetsov ML, Fernandes AR, Silva A, Pan C-J, Lee J-F, Hwang B-J, J. L. Pombeiro A.  2014.  Cobalt Complexes with Pyrazole Ligands as Catalyst Precursors for the Peroxidative Oxidation of Cyclohexane: X-ray Absorption Spectroscopy Studies and Biological Applications. Chemistry – An Asian Journal. 9:1132–1143., Number 4: WILEY-VCH Verlag AbstractWebsite
n/a
2013
Gromicho, M, Magalhaes M, Torres F, Dinis J, Fernandes AR, Rendeiro P, Tavares P, Laires A, Rueff J, Rodrigues AS.  2013.  Instability of mRNA expression signatures of drug transporters in chronic myeloid leukemia patients resistant to imatinib. Oncol Rep. 29(2):741-50.13gromichoor.pdf
2012
Santos, S, Marques V, Pires M, Silveira L, Oliveira H, Lanca V, Brito D, Madeira H, Esteves JF, Freitas A, Carreira IM, Gaspar IM, Monteiro C, Fernandes AR.  2012.  High resolution melting: improvements in the genetic diagnosis of hypertrophic cardiomyopathy in a Portuguese cohort. BMC Med Genet. 13:17.12santosbmcmg.pdf
2011
Gromicho, M, Dinis J, Magalhaes M, Fernandes AR, Tavares P, Laires A, Rueff J, Rodrigues AS.  2011.  Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1. Leuk Lymphoma. 52(10):1980-90.11gromicholl.pdf