Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Pokkuluri, PR, Londer YY, Duke NEC, Pessanha M, Yang X, Orshonsky V, Orshonsky L, Erickson J, Zagyanskiy Y, Salgueiro CA, Schiffer M.  2011.  Structure of a novel dodecaheme cytochrome c from Geobacter sulfurreducens reveals an extended 12 nm protein with interacting hemes. Journal of Structural Biology. 174(1):223-233. AbstractWebsite

Multiheme cytochromes c are important in electron transfer pathways in reduction of both soluble and insoluble Fe(III) by Geobacter sulfurreducens. We determined the crystal structure at 3.2 Å resolution of the first dodecaheme cytochrome c (GSU1996) along with its N-terminal and C-terminal hexaheme fragments at 2.6 and 2.15 Å resolution, respectively. The macroscopic reduction potentials of the full-length protein and its fragments were measured. The sequence of GSU1996 can be divided into four c7-type domains (A, B, C and D) with homology to triheme cytochromes c7. In cytochromes c7 all three hemes are bis–His coordinated, whereas in c7-type domains the last heme is His–Met coordinated. The full-length GSU1996 has a 12 nm long crescent shaped structure with the 12 hemes arranged along a polypeptide to form a “nanowire” of hemes; it has a modular structure. Surprisingly, while the C-terminal half of the protein consists of two separate c7-type domains (C and D) connected by a small linker, the N-terminal half of the protein has two c7-type domains (A and B) that form one structural unit. This is also observed in the AB fragment. There is an unexpected interaction between the hemes at the interface of domains A and B, which form a heme-pair with nearly parallel stacking of their porphyrin rings. The hemes adjacent to each other throughout the protein are within van der Waals distance which enables efficient electron exchange between them. For the first time, the structural details of c7-type domains from one multiheme protein were compared.

2007
Todorovic, S, Leal SS, Salgueiro CA, Zebger I, Hildebrandt P, Murgida DH, Gomes CM.  2007.  A Spectroscopic Study of the Temperature Induced Modifications on Ferredoxin Folding and Iron−Sulfur Moieties. Biochemistry. 46(37):10733-10738. AbstractWebsite

Thermal perturbation of the dicluster ferredoxin from Acidianus ambivalens was investigated employing a toolbox of spectroscopic methods. FTIR and visible CD were used for assessing changes of the secondary structure and coarse alterations of the [3Fe4S] and [4Fe4S] cluster moieties, respectively. Fine details of the disassembly of the metal centers were revealed by paramagnetic NMR and resonance Raman spectroscopy. Overall, thermally induced unfolding of AaFd is initiated with the loss of α-helical content at relatively low temperatures (Tapp (m) ~ 44 °C), followed by the disruption of both iron−sulfur clusters (Tapp (m) ~ 53−60 °C). The degradation of the metal centers triggers major structural changes on the protein matrix, including the loss of tertiary contacts (Tapp (m) ~ 58 °C) and a change, rather than a significant net loss, of secondary structure (Tapp (m) ~ 60 °C). This latter process triggers a secondary structure reorganization that is consistent with the formation of a molten globule state. The combined spectroscopic approach here reported illustrates how changes in the metalloprotein organization are intertwined with disassembly of the iron−sulfur centers, denoting the conformational interplay of the protein backbone with cofactors.