Publications

Export 47 results:
Sort by: Author Title Type [ Year  (Asc)]
1992
Salgueiro, CA, Turner DL, Santos H, Legall J, Xavier AV.  1992.  Assignment of the redox potentials to the four haems in Desulfovibrio vulgaris cytochrome c3 by 2D-NMR. FEBS Letters. 314(2):155-158. AbstractWebsite

Using 2D-NMR the four haems of Desulfovibrio vulgaris (Hildenborough) cytochromes, within the X-ray structure were fully cross-assigned according to their redox potential. The strategy used was based on a complete network of chemical exchange connectivities between the NMR signals obtained for all oxidation levels to the corresponding ones in the fully reduced spectrum [1992, Eur. J. Biochem., in press]. This unequivocal cross-assignment disagrees within earlier results obtained for the similar protein from Desulfovibrio vulgaris (Miyazaki F.) [1991, FEBS Lett. 285, 149–151]

Turner, DL, Salgueiro CA, Legall J, Xavier AV.  1992.  Structural studies of Desulfovibrio vulgaris ferrocytochrome c3 by two-dimensional NMR. European Journal of Biochemistry. 210(3):931-936. AbstractWebsite

Two-dimensional NMR has been used to make specific assignments for the four haems in Desulfovibrio vulgaris (Hildenborough) ferrocytochrome c3 and to determine their haem core architecture. The NMR signals from the haem protons were assigned according to type using two-dimensional NMR experiments which led to four sets of signals, one for each of the haems. Specific assignments were obtained by calculating the ring current shifts which arise from other haems and aromatic residues. Observation of interhaem NOEs confirmed the assignments and established that the relative orientation of the haems is identical to that found in the crystal structure of D. vulgaris (Miyazaki F.) ferricytochrome c3. Assignments were also made for all the aromatic residues except for the haem ligands and F20, which is shifted under the main envelope of signals. The NOEs observed between these aromatic protons and haem protons confirm the similarity between the structures in solution and in the crystal. The assignments reported here are the basis for the cross-assignments of the four microscopic haem redox potentials to specific haems in the protein structure.

1994
Turner, DL, Salgueiro CA, Catarino T, Legall J, Xavier AV.  1994.  Homotropic and heterotropic cooperativity in the tetrahaem cytochrome c3 from Desulfovibrio vulgaris. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1187(2):232-235. AbstractWebsite

The thermodynamic parameters which govern the homotropic (e−/e−) and heterotropic (e−/H+) cooperativity in the tetrahaem cytochrome c3 isolated from Desulfovibrio vulgaris (Hildenborough) were determined, using the paramagnetic shifts of haem methyl groups in the NMR spectra of intermediate oxidized states at different pH levels. A model is put forward to explain how the network of positive and negative cooperativities between the four haems and acid/base group(s) enables the protein to achieve a proton-assisted 2e− step.

1995
Turner, DL, Salgueiro CA, Schenkels P, Legall J, Xavier AV.  1995.  Carbon-13 NMR studies of the influence of axial ligand orientation on haem electronic structure. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1246(1):24-28. AbstractWebsite

Three-quarters of the carbon-13 resonances of nuclei attached to the four haems of Desulfovibrio vulgaris ferricytochrome c3 are assigned. Preliminary analysis of their Fermi contact interactions shows that the shifts are directly related to the orientation of both of the axial histidine ligands in each case and the approach can therefore be used to obtain structural information in other cytochromes with bis-histidinyl coordination. The implications for the control of redox potential in cytochromes are discussed.

1996
Turner, DL, Salgueiro CA, Catarino T, Legall J, Xavier AV.  1996.  NMR Studies of Cooperativity in the Tetrahaem Cytochrome c3 from Desulfovibrio vulgaris. European Journal of Biochemistry. 241(3):723-731. AbstractWebsite

The thermodynamic properties of the Desulfovibrio vulgaris (Hildenborough) tetrahaem cytochrome c3 (Dvc3) are rationalised by a model which involves both homotropic (e−/e−) and heterotropic (e−/H+) cooperativity. The paramagnetic shifts of a methyl group from each haem of the DVc3 have been determined in each stage of oxidation at several pH values by means of two-dimensional exchange NMR. The thermodynamic parameters are obtained by fitting the model to the NMR data and to redox titrations followed by visible spectroscopy. They show significant positive cooperativity between two of the haems whereas the remaining interactions appear to be largely electrostatic in origin. These parameters imply that the protein undergoes a proton-assisted two-electron transfer which can be used for energy transduction. Comparison with the crystal structure together with measurement of the kinetics of proton exchange suggest that the pH dependence is mediated by a charged residue(s) readily acessible to the solvent and close to haem I.

Louro, RO, Catarino T, Salgueiro CA, Legall J, Xavier AV.  1996.  Redox-Bohr effect in the tetrahaem cytochrome c3 from Desulfovibrio vulgaris: a model for energy transduction mechanisms. Journal of Biological Inorganic Chemistry. 1(1):34-38. AbstractWebsite

Using potentiometric titrations, two protons were found to participate in the redox-Bohr effect observed for cytochrome c3 from Desulfovibrio vulgaris (Hildenborough). Within the framework of the thermodynamic model previously presented, this finding supports the occurrence of a concerted proton-assisted 2e– step, ideally suited for the coupling role of cytochrome c3 to hydrogenase. Furthermore, at physiological pH, it is shown that when sulfate-reducing bacteria use H2 as energy source, cytochrome c3 can be used as a charge separation device, achieving energy transduction by energising protons which can be left in the acidic periplasmic side and transferring deenergised electrons to sulfate respiration. This mechanism for energy transduction, using a full thermodynamic data set, is compared to that put forward to explain the proton-pumping function of cytochrome c oxidase.

Saraiva, LM, Salgueiro CA, Legall J, van Dongen WMAM, Xavier AV.  1996.  Site-directed mutagenesis of a phenylalanine residue strictly conserved in cytochromes c3. Journal of Biological Inorganic Chemistry. 1(6):542-550. AbstractWebsite

Reduction of the haems in tetrahaem cytochromes c3 is a cooperative process, i.e., reduction of each of the haems depends on the redox states of the other haems. Furthermore, electron transfer is coupled to proton transfer (redox-Bohr effect). Two of its haems and a strictly conserved nearby phenylalanine residue, F20, in Desulfovibrio vulgaris (Hildenborough) cytochrome c3 form a structural motif that is present in all cytochromes c3 and also in cytochrome c oxidase. A putative role for this phenylalanine residue in the cooperativity of haem reduction was investigated. Therefore, this phenylalanine was replaced, with genetic techniques, by isoleucine and tyrosine in D. vulgaris (Hildenborough) cytochrome c3. Cyclic voltammetry studies revealed a small increase (30 mV) in one of the macroscopic redox potentials in the mutated cytochromes. EPR showed that the main alterations occurred in the vicinity of haem I, the haem closest to residue 20 and one of the haems responsible for positive cooperativities in electron transfer of D. vulgaris cytochrome c3. NMR studies of F20I cytochrome c3 demonstrated that the haem core architecture is maintained and that the more affected haem proton groups are those near the mutation site. NMR redox titrations of this mutated protein gave evidence for only small changes in the relative redox potentials of the haems. However, electron/electron and proton/electron cooperativity are maintained, indicating that this aromatic residue has no essential role in these processes. Furthermore, chemical modification of the N-terminal amino group of cytochrome c3 backbone, which is also very close to haem I, had no effect on the network of cooperativities.

1997
Salgueiro, CA, Turner DL, Legall J, Xavier AV, Legall J.  1997.  Reevaluation of the redox and redox-Bohr cooperativity in tetrahaem Desulfovibrio vulgaris (Miyazaki F) cytochrome c3. Journal of Biological Inorganic Chemistry. 2(3):343-349. AbstractWebsite

The thermodynamic model of five interacting charge centres (four haems and an ionisable centre), which was used in the characterisation of the thermodynamic properties of Desulfovibrio vulgaris (Hildenborough) cytochrome c3 (c3DvH), is now used to reevaluate the thermodynamic properties in Desulfovibrio vulgaris (Miyazaki F) cytochrome c3 (c3DvM) on the basis of published data (Park, J.-S., Ohmura, T., Kano, K., Sagara, T., Niki, K., Kyogoku, Y. and Akutsu, H. (1996) Biochim. Biophys. Acta 1293, 45–54). Contrary to the assertion of Park et al. (1996), the pH dependence of the proton chemical shifts of haem methyls in c3DvM in several stages of oxidation is well described by the model, which involves both homotropic (e–/e–) and heterotropic (e–/H+) cooperativity. This shows that the pH dependence observed for c3DvM is not significantly more complicated than that observed for c3DvH. Since the parameters which we now obtain for c3DvM are generated with the same model as those from c3DvH, albeit using less precise data, it is possible to make a preliminary comparison of the thermodynamic properties of these two proteins and of their role in energy transduction.
The extrinsic dipolar shifts generated for each methyl group by each of the four haems in c3DvM are also determined. A novel method for approximating the magnetic susceptibility tensors is used: the orientations of the principal axes of the tensors have been shown to be closely related to the geometry of the axial ligands, which is available from the X-ray structure of c3DvM, and the components of the tensors are extrapolated from EPR g values. The inclusion of the calculated haem extrinsic contributions clearly describes the pH dependence of the haem methyls in the core of the protein, close to other haems. This description is most remarkable in the case of the haem methyl 21CH3 II I, for which the "unusual pH dependence" commented on by Park et al. (1996) is easily explained using the thermodynamic parameters determined by our model together with the calculated extrinsic dipolar shifts, thus providing a test of the analysis.

1998
Louro, RO, Catarino T, Salgueiro CA, Legall J, Turner DL, Xavier AV.  1998.  Molecular Basis for Energy Transduction: Mechanisms of Cooperativity in Multihaem Cytochromes. Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation NATO ASI Series Volume 512. (Canters, G.W., Vijgenboom, E., Eds.).:209-223.: Springer Netherlands Abstract

Energy transduction through electron/proton cooperativity is at the heart of the metabolism of every living organism Nonetheless, the search for the structural bases sustaining these phenomena has been hindered by the fact that they are usually associated with complex transmembrane proteins of high molecular weight.

Saraiva, LM, Salgueiro CA, da Costa PN, Messias AC, Legall J, van Dongen WMAM, Xavier AV.  1998.  Replacement of Lysine 45 by Uncharged Residues Modulates the Redox-Bohr Effect in Tetraheme Cytochrome c3 of Desulfovibrio vulgaris (Hildenborough). Biochemistry. 37(35):12160-12165. AbstractWebsite

The structural basis for the pH dependence of the redox potential in the tetrahemic Desulfovibrio vulgaris (Hildenborough) cytochrome c3 was investigated by site-directed mutagenesis of charged residues in the vicinity of heme I. Mutation of lysine 45, located in the neighborhood of the propionates of heme I, by uncharged residues, namely threonine, glutamine and leucine, was performed. The replacement of a conserved charged residue, aspartate 7, present in the N-terminal region and near heme I was also attempted. The analysis of the redox interactions as well as the redox-Bohr behavior of the mutated cytochromes c3 allowed the conclusion that residue 45 has a functional role in the control of the pKa of the propionate groups of heme I and confirms the involvement of this residue in the redox-Bohr effect.

2002
Louro, RO, Pessanha M, Reid GA, Chapman SK, Turner DL, Salgueiro CA.  2002.  Determination of the orientation of the axial ligands and of the magnetic properties of the haems in the tetrahaem ferricytochrome from Shewanella frigidimarina. FEBS Letters. 531(3):520-524. AbstractWebsite

The unambiguous assignment of the nuclear magnetic resonance (NMR) signals of the α-substituents of the haems in the tetrahaem cytochrome isolated from Shewanella frigidimarina NCIMB400, was made using a combination of homonuclear and heteronuclear experiments. The paramagnetic 13C shifts of the nuclei directly bound to the porphyrin of each haem group were analysed in the framework of a model for the haem electronic structure. The analysis yields g-tensors for each haem, which allowed the assignment of some electron paramagnetic resonance (EPR) signals to specific haems, and the orientation of the magnetic axes relative to each haem to be established. The orientation of the axial ligands of the haems was determined semi-empirically from the NMR data, and the structural results were compared with those of the homologous tetrahaem cytochrome from Shewanella oneidensis MR-1 showing significant similarities between the two proteins.

2003
Pessanha, M, Louro RO, Correia IJ, Rothery EL, Pankhurst KL, Reid GA, Chapman SK, Turner DL, Salgueiro CA.  2003.  Thermodynamic characterization of a tetrahaem cytochrome isolated from a facultative aerobic bacterium, Shewanella frigidimarina: a putative redox model for flavocytochrome c3. Biochemical Journal. 370(Pt. 2):489-495. AbstractWebsite

The facultative aerobic bacterium Shewanella frigidimarina produces a small c-type tetrahaem cytochrome (86 residues) under anaerobic growth conditions. This protein is involved in the respiration of iron and shares 42% sequence identity with the N-terminal domain of a soluble flavocytochrome, isolated from the periplasm of the same bacterium, which also contains four c-type haem groups. The thermodynamic properties of the redox centres and of an ionizable centre in the tetrahaem cytochrome were determined using NMR and visible spectroscopy techniques. This is the first detailed thermodynamic study performed on a tetrahaem cytochrome isolated from a facultative aerobic bacterium and reveals that this protein presents unique features. The redox centres have negative and different redox potentials, which are modulated by redox interactions between the four haems (covering a range of 8–56mV) and by redox–Bohr interactions between the haems and an ionizable centre (-4 to -36mV) located in close proximity to haem III. All of the interactions between the five centres are clearly dominated by electrostatic effects and the microscopic reduction potential of haem III is the one most affected by the oxidation of the other haems and by the protonation state of the molecule. Altogether, this study indicates that the tetrahaem cytochrome isolated from S. frigidimarina (Sfc) has the thermodynamic properties to work as an electron wire between its redox partners. Considering the high degree of sequence identity between Sfc and the cytochrome domain of flavocytochrome c3, the structural similarities of the haem core, and that the macroscopic potentials are also identical, the results obtained in this work are rationalized in order to put forward a putative redox model for flavocytochrome c3.

2004
Pessanha, M, Rothery EL, Louro RO, Turner DL, Miles CS, Reid GA, Chapman SK, Xavier AV, Salgueiro CA.  2004.  Redox behaviour of the haem domain of flavocytochrome c3 from Shewanella frigidimarina probed by NMR. FEBS Letters. 578(1/2):185-190. AbstractWebsite

Flavocytochrome c3 from Shewanella frigidimarina (fcc3) is a tetrahaem periplasmic protein of 64 kDa with fumarate reductase activity. This work reports the first example of NMR techniques applied to the assignment of the thermodynamic order of oxidation of the four individual haems for such large protein, expanding its applicability to a wide range of proteins. NMR data from partially and fully oxidised samples of fcc3 and a mutated protein with an axial ligand of haem IV replaced by alanine were compared with calculated chemical shifts, allowing the structural assignment of the signals and the unequivocal determination of the order of oxidation of the haems. As oxidation progresses the fcc3 haem domain is polarised, with haems I and II much more oxidised than haems III and IV, haem IV being the most reduced. Thus, during catalysis as an electron is taken by the flavin adenosine dinucleotide from haem IV, haem III is eager to re-reduce haem IV, allowing the transfer of two electrons to the active site.

Pessanha, M, Londer YY, Long WC, Erickson J, Pokkuluri PR, Schiffer M, Salgueiro CA.  2004.  Redox Characterization of Geobacter sulfurreducens Cytochrome c7:  Physiological Relevance of the Conserved Residue F15 Probed by Site-Specific Mutagenesis. Biochemistry. 43(30):9909-9917. AbstractWebsite

The complete genome sequence of the δ-proteobacterium Geobacter sulfurreducens reveals a large abundance of multiheme cytochromes. Cytochrome c7, isolated from this metal ion-reducing bacterium, is a triheme periplasmic electron-transfer protein with Mr 9.6 kDa. This protein is involved in metal ion-reducing pathways and shares 56% sequence identity with a triheme cytochrome isolated from the closely related δ-proteobacterium Desulfuromonas acetoxidans (Dac7). In this work, two-dimensional NMR was used to monitor the heme core and the general folding in solution of the G. sulfurreducens triheme cytochrome c7 (PpcA). NMR signals obtained for the three hemes of PpcA at different stages of oxidation were cross-assigned to the crystal structure [Pokkuluri, P. R., Londer, Y. Y., Duke, N. E. C., Long, W. C., and Schiffer, M. (2004) Biochemistry 43, 849−859] using the complete network of chemical exchange connectivities, and the order in which each heme becomes oxidized was determined at pH 6.0 and 8.2. Redox titrations followed by visible spectroscopy were also performed in order to monitor the macroscopic redox behavior of PpcA. The results obtained showed that PpcA and Dac7 have different redox properties:  (i) the order in which each heme becomes oxidized is different; (ii) the reduction potentials of the heme groups and the global redox behavior of PpcA are pH dependent (redox−Bohr effect) in the physiological pH range, which is not observed with Dac7. The differences observed in the redox behavior of PpcA and Dac7 may account for the different functions of these proteins and constitute an excellent example of how homologous proteins can perform different physiological functions. The redox titrations followed by visible spectroscopy of PpcA and two mutants of the conserved residue F15 (PpcAF15Y and PpcAF15W) lead to the conclusion that F15 modulates the redox behavior of PpcA, thus having an important physiological role.

Pokkuluri, PR, Londer YY, Duke NEC, Erickson J, Pessanha M, Salgueiro CA, Schiffer M.  2004.  Structure of a novel c7-type three-heme cytochrome domain from a multidomain cytochrome c polymer. Protein Science. 13(6):1684-1692. AbstractWebsite

The structure of a novel c7-type cytochrome domain that has two bishistidine coordinated hemes and one heme with histidine, methionine coordination (where the sixth ligand is a methionine residue) was determined at 1.7 Å resolution. This domain is a representative of domains that form three polymers encoded by the Geobacter sulfurreducens genome. Two of these polymers consist of four and one protein of nine c7-type domains with a total of 12 and 27 hemes, respectively. Four individual domains (termed A, B, C, and D) from one such multiheme cytochrome c (ORF03300) were cloned and expressed in Escherichia coli. The domain C produced diffraction quality crystals from 2.4 M sodium malonate (pH 7). The structure was solved by MAD method and refined to an R-factor of 19.5% and R-free of 21.8%. Unlike the two c7 molecules with known structures, one from G. sulfurreducens (PpcA) and one from Desulfuromonas acetoxidans where all three hemes are bishistidine coordinated, this domain contains a heme which is coordinated by a methionine and a histidine residue. As a result, the corresponding heme could have a higher potential than the other two hemes. The apparent midpoint reduction potential, Eapp, of domain C is −105 mV, 50 mV higher than that of PpcA.

2005
Salgueiro, CA, Morgado L, Fonseca B, Lamosa P, Catarino T, Turner DL, Louro RO.  2005.  Binding of ligands originates small perturbations on the microscopic thermodynamic properties of a multicentre redox protein. FEBS Journal. 272(9):2251-2260. AbstractWebsite

NMR and visible spectroscopy coupled to redox measurements were used to determine the equilibrium thermodynamic properties of the four haems in cytochrome c3 under conditions in which the protein was bound to ligands, the small anion phosphate and the protein rubredoxin with the iron in the active site replaced by zinc. Comparison of these results with data for the isolated cytochrome shows that binding of ligands causes only small changes in the reduction potentials of the haems and their pairwise interactions, and also that the redox-sensitive acid–base centre responsible for the redox–Bohr effect is essentially unaffected. Although neither of the ligands tested is a physiological partner of cytochrome c3, the small changes observed for the thermodynamic properties of cytochrome c3 bound to these ligands vs. the unbound state, indicate that the thermodynamic properties measured for the isolated protein are relevant for a physiological interpretation of the role of this cytochrome in the bioenergetic metabolism of Desulfovibrio.

Pessanha, M, Rothery EL, Louro RO, Turner DL, Miles CS, Reid GA, Chapman SK, Xavier AV, Salgueiro CA.  2005.  Elucidation of the Functional Redox Behavior of Fumarate Reductase from Shewanella frigidimarina by NMR. Annals Magnetic Resonance. 4(1/2):24-28. AbstractWebsite

NMR spectroscopy has been applied with great success to study electron transfer proteins
with multiple redox centers. This study aimed to elucidate the redox behavior the enzyme fumarate
reductase from Shewanella frigidimarina and particularly to reveal the electron transfer mechanism
from the N-terminal domain to the active center. We developed a new strategy encompassing the
acquisition of 1H-EXSY bidimensional spectra for observation of chemical exchange connectivities in
partially oxidized samples of fcc3, estimation of the paramagnetic chemical shifts expected for the
heme substituents and their comparison with NMR spectra obtained in the fully oxidized protein. This
study allowed obtaining the order of oxidation of the different groups (II-I-III, IV) and gave insights of
the functional mechanisms that allow fcc3 to efficiently transfer electrons from the N-terminal domain
to the active center.

2006
Louro, RO, Salgueiro CA.  2006.  Cytochromes of Shewanella respiratory pathways. Metal Ions in Biology and Medicine - volume 9. (Alpoim, M.C., Morais, P.V., Santos, MA, Cristovão, AJ, Centeno, JA, Collery, P, Eds.).:236-241., Paris: John Libbey Eurotext Abstract

No abstract included.

Pessanha, M, Morgado L, Louro RO, Londer YY, Pokkuluri PR, Schiffer M, Salgueiro CA.  2006.  Thermodynamic Characterization of Triheme Cytochrome PpcA from Geobacter sulfurreducens:  Evidence for a Role Played in e-/H+ Energy Transduction. Biochemistry. 45(46):13910-13917. AbstractWebsite

The facultative aerobic bacterium Geobacter sulfurreducens produces a small periplasmic c-type triheme cytochrome with 71 residues (PpcA) under anaerobic growth conditions, which is involved in the iron respiration. The thermodynamic properties of the PpcA redox centers and of a protonatable center were determined using NMR and visible spectroscopy techniques. The redox centers have negative and different reduction potentials (−162, −143, and −133 mV for heme I, III, and IV, respectively, for the fully reduced and protonated protein), which are modulated by redox interactions among the hemes (covering a range from 10 to 36 mV) and by redox−Bohr interactions (up to −62 mV) between the hemes and a protonatable center located in the proximity of heme IV. All the interactions between the four centers are dominated by electrostatic effects. The microscopic reduction potential of heme III is the one most affected by the oxidation of the other hemes, whereas heme IV is the most affected by the protonation state of the molecule. The thermodynamic properties of PpcA showed that pH strongly modulates the redox behavior of the individual heme groups. A preferred electron transfer pathway at physiologic pH is defined, showing that PpcA has the necessary thermodynamic properties to perform e-/H+ energy transduction, contributing to a H+ electrochemical potential gradient across the periplasmic membrane that drives ATP synthesis. PpcA is 46% identical in sequence to and shares a high degree of structural similarity with a periplasmic triheme cytochrome c7 isolated from Desulfuromonas acetoxidans, a bacterium closely related to the Geobacteracea family. However, the results obtained for PpcA are quite different from those published for D. acetoxidans c7, and the physiological consequences of these differences are discussed.

2007
Morgado, L, Bruix M, Londer YY, Pokkuluri PR, Schiffer M, Salgueiro CA.  2007.  Redox-linked conformational changes of a multiheme cytochrome from Geobacter sulfurreducens. Biochemical and Biophysical Research Communications. 360(1):194-198. AbstractWebsite

Multiheme c-type cytochromes from members of the Desulfovibrionacea and Geobactereacea families play crucial roles in the bioenergetics of these microorganisms. Thermodynamic studies using NMR and visible spectroscopic techniques on tetraheme cytochromes c3 isolated from Desulfovibrio spp. and more recently on a triheme cytochrome from Geobacter sulfurreducens showed that the properties of each redox centre are modulated by the neighbouring redox centres enabling these proteins to perform energy transduction and thus contributing to cellular energy conservation. Electron/proton transfer coupling relies on redox-linked conformational changes that were addressed for some multiheme cytochromes from the comparison of protein structure of fully reduced and fully oxidised forms. In this work, we identify for the first time in a multiheme cytochrome the simultaneous presence of two different conformations in solution. This was achieved by probing the different oxidation stages of a triheme cytochrome isolated from G. sulfurreducens using 2D-NMR techniques. The results presented here will be the foundations to evaluate the modulation of the redox centres properties by conformational changes that occur during the reoxidation of a multiheme protein.

Todorovic, S, Leal SS, Salgueiro CA, Zebger I, Hildebrandt P, Murgida DH, Gomes CM.  2007.  A Spectroscopic Study of the Temperature Induced Modifications on Ferredoxin Folding and Iron−Sulfur Moieties. Biochemistry. 46(37):10733-10738. AbstractWebsite

Thermal perturbation of the dicluster ferredoxin from Acidianus ambivalens was investigated employing a toolbox of spectroscopic methods. FTIR and visible CD were used for assessing changes of the secondary structure and coarse alterations of the [3Fe4S] and [4Fe4S] cluster moieties, respectively. Fine details of the disassembly of the metal centers were revealed by paramagnetic NMR and resonance Raman spectroscopy. Overall, thermally induced unfolding of AaFd is initiated with the loss of α-helical content at relatively low temperatures (Tapp (m) ~ 44 °C), followed by the disruption of both iron−sulfur clusters (Tapp (m) ~ 53−60 °C). The degradation of the metal centers triggers major structural changes on the protein matrix, including the loss of tertiary contacts (Tapp (m) ~ 58 °C) and a change, rather than a significant net loss, of secondary structure (Tapp (m) ~ 60 °C). This latter process triggers a secondary structure reorganization that is consistent with the formation of a molten globule state. The combined spectroscopic approach here reported illustrates how changes in the metalloprotein organization are intertwined with disassembly of the iron−sulfur centers, denoting the conformational interplay of the protein backbone with cofactors.

2008
Fernandes, AP, Couto I, Morgado L, Londer YY, Salgueiro CA.  2008.  Isotopic labeling of c-type multiheme cytochromes overexpressed in E. coli. Protein Expression and Purification. 59(1):182-188. AbstractWebsite

Progresses made in bacterial genome sequencing show a remarkable profusion of multiheme c-type cytochromes in many bacteria, highlighting the importance of these proteins in different cellular events. However, the characterization of multiheme cytochromes has been significantly retarded by the numerous experimental challenges encountered by researchers who attempt to overexpress these proteins, especially if isotopic labeling is required. Here we describe a methodology for isotopic labeling of multiheme cytochromes c overexpressed in Escherichia coli, using the triheme cytochrome PpcA from Geobacter sulfurreducens as a model protein. By combining different strategies previously described and using E. coli cells containing the gene coding for PpcA and the cytochrome c maturation gene cluster, an experimental labeling methodology was developed that is based on two major aspects: (i) use of a two-step culture growth procedure, where cell growth in rich media was followed by transfer to minimal media containing 15N-labeled ammonium chloride, and (ii) incorporation of the heme precursor delta-aminolevulinic acid in minimal culture media. The yields of labeled protein obtained were comparable to those obtained for expression of PpcA in rich media. Proper protein folding and labeling were confirmed by UV–visible and NMR spectroscopy. To our knowledge, this is the first report of a recombinant multiheme cytochrome labeling and it represents a major breakthrough for functional and structural studies of multiheme cytochromes.

Morgado, L, Bruix M, Orshonsky V, Londer YY, Duke NEC, Yang X, Pokkuluri PR, Schiffer M, Salgueiro CA.  2008.  Structural insights into the modulation of the redox properties of two Geobacter sulfurreducens homologous triheme cytochromes. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1777(9):1157-1165. AbstractWebsite

The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III–I–IV for PpcB, as opposed to I–IV–III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.

Pokkuluri, PR, Pessanha M, Londer YY, Wood SJ, Duke NEC, Wilton R, Catarino T, Salgueiro CA, Schiffer M.  2008.  Structures and Solution Properties of Two Novel Periplasmic Sensor Domains with c-Type Heme from Chemotaxis Proteins of Geobacter sulfurreducens: Implications for Signal Transduction. Journal of Molecular Biology. 377(5):1498-1517. AbstractWebsite

Periplasmic sensor domains from two methyl-accepting chemotaxis proteins from Geobacter sulfurreducens (encoded by genes GSU0935 and GSU0582) were expressed in Escherichia coli. The sensor domains were isolated, purified, characterized in solution, and their crystal structures were determined. In the crystal, both sensor domains form swapped dimers and show a PAS-type fold. The swapped segment consists of two helices of about 45 residues at the N terminus with the hemes located between the two monomers. In the case of the GSU0582 sensor, the dimer contains a crystallographic 2-fold symmetry and the heme is coordinated by an axial His and a water molecule. In the case of the GSU0935 sensor, the crystals contain a non-crystallographic dimer, and surprisingly, the coordination of the heme in each monomer is different; monomer A heme has His-Met ligation and monomer B heme has His-water ligation as found in the GSU0582 sensor. The structures of these sensor domains are the first structures of PAS domains containing covalently bound heme. Optical absorption, electron paramagnetic resonance and NMR spectroscopy have revealed that the heme groups of both sensor domains are high-spin and low-spin in the oxidized and reduced forms, respectively, and that the spin-state interconversion involves a heme axial ligand replacement. Both sensor domains bind NO in their ferric and ferrous forms but bind CO only in the reduced form. The binding of both NO and CO occurs via an axial ligand exchange process, and is fully reversible. The reduction potentials of the sensor domains differ by 95 mV (− 156 mV and − 251 mV for sensors GSU0582 and GSU0935, respectively). The swapped dimerization of these sensor domains and redox-linked ligand switch might be related to the mechanism of signal transduction by these chemotaxis proteins.

2009
Pokkuluri, PR, Londer YY, Wood SJ, Duke NEC, Morgado L, Salgueiro CA, Schiffer M.  2009.  Outer membrane cytochrome c, OmcF, from Geobacter sulfurreducens: High structural similarity to an algal cytochrome c6. Proteins: Structure, Function, and Bioinformatics. 74(1):266-270. AbstractWebsite

No abstract included.