Louro, RO, Salgueiro CA.
2006.
Cytochromes of Shewanella respiratory pathways. Metal Ions in Biology and Medicine - volume 9. (
Alpoim, M.C., Morais, P.V., Santos, MA, Cristovão, AJ, Centeno, JA, Collery, P, Eds.).:236-241., Paris: John Libbey Eurotext
Abstract
Louro, RO, Catarino T, Salgueiro CA, Legall J, Turner DL, Xavier AV.
1998.
Molecular Basis for Energy Transduction: Mechanisms of Cooperativity in Multihaem Cytochromes. Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation NATO ASI Series Volume 512. (
Canters, G.W., Vijgenboom, E., Eds.).:209-223.: Springer Netherlands
AbstractEnergy transduction through electron/proton cooperativity is at the heart of the metabolism of every living organism Nonetheless, the search for the structural bases sustaining these phenomena has been hindered by the fact that they are usually associated with complex transmembrane proteins of high molecular weight.
Salgueiro, CA, Dantas JM, Morgado L.
2019.
Principles of Nuclear Magnetic Resonance and Selected Biological Applications. Radiation in Bioanalysis: Spectroscopic Techniques and Theoretical Methods. (
Pereira, Alice S., Tavares, Pedro, Limão-Vieira, Paulo, Eds.).:245–286., Cham: Springer International Publishing
AbstractNuclear Magnetic Resonance (NMR) spectroscopy is extremely powerful to study distinct biological systems ranging from biomolecules to specific metabolites. This chapter presents the basic concepts of the technique and illustrates its potential to study such systems. Similarly, to other spectroscopic techniques, the theoretical background of NMR is sustained by detailed mathematics and physical chemistry concepts, which were kept to the minimum. The intent is to introduce the fundamentals of the technique to science students from different backgrounds. The basic concepts of NMR spectroscopy are briefly presented in the first section, and the following sections describe applications in the biosciences field, using electron transfer proteins as model, particularly cytochromes. The heme groups endow cytochromes with particular features making them excellent examples to illustrate the high versatility of NMR spectroscopy. The main methodologies underlying protein solution structure determination are discussed in the second section. This is followed by a description of the main experiments explored to structurally map protein-protein or protein-ligand interface regions in molecular complexes. Finally, it is shown how NMR spectroscopy can assist in the functional characterization of multiheme cytochromes.