Publications

Export 44 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Dantas, J, Morgado L, Aklujkar M, Bruix M, Londer Y, Schiffer M, Pokkuluri RP, Salgueiro C.  2015.  Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies. Frontiers in Microbiology. 6:752. AbstractWebsite

Multiheme cytochromes have been implicated in Geobacter sulfurreducens (Gs) extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by Gs. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of Gs multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of Gs by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell’s outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of Gs. For the first time Gs strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve bioelectrochemical technologies.

Santos, TC, de Oliveira AR, Dantas JM, Salgueiro CA, Cordas CM.  2015.  Thermodynamic and kinetic characterization of PccH, a key protein in microbial electrosynthesis processes in Geobacter sulfurreducens. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1847:1113-1118., Number 10 AbstractWebsite

Abstract The monoheme c-type cytochrome PccH from Geobacter sulfurreducens, involved in the pathway of current-consumption in biofilms, was electrochemically characterized in detail. Cyclic voltammetry was used to determine the kinetics and thermodynamics properties of PccH redox behavior. Entropy, enthalpy and Gibbs free energy changes associated with the redox center transition between the ferric and the ferrous state were determined, indicating an enhanced solvent exposure. The midpoint redox potential is considerably low for a monoheme c-type cytochrome and the heterogeneous electron transfer constant rate reflects a high efficiency of electron transfer process in PccH. The midpoint redox potential dependence on the pH (redox-Bohr effect) was investigated, over the range of 2.5 to 9.1, and is described by the protonation/deprotonation events of two distinct centers in the vicinity of the heme group with pKa values of 2.7 (pKox1); 4.1 (pKred1) and 5.9 (pKox2); 6.4 (pKred2). Based on the inspection of PccH structure, these centers were assigned to heme propionic acids \{P13\} and P17, respectively. The observed redox-Bohr effect indicates that PccH is able to thermodynamically couple electron and proton transfer in the G. sulfurreducens physiological pH range.

2014
Dantas, JM, Morgado L, Catarino T, Kokhan O, Pokkuluri PR, Salgueiro CA.  2014.  Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances. Biochim Biophys Acta. 1837(6):750-760. AbstractWebsite

The bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.

Dantas, JM, Morgado L, Marques AC, Salgueiro CA.  2014.  Probing the effect of ionic strength on the functional robustness of the triheme cytochrome PpcA from Geobacter sulfurreducens: a contribution for optimizing biofuel cell's power density. J Phys Chem B. 118(43):12416-12425. AbstractWebsite

The increase of conductivity of electrolytes favors the current production in microbial fuel cells (MFCs). Adaptation of cell cultures to higher ionic strength is a promising strategy to increase electricity production. The bacterium Geobacter sulfurreducens is considered a leading candidate for MFCs. Therefore, it is important to evaluate the impact of the ionic strength on the functional properties of key periplasmic proteins that warrants electron transfer to cell exterior. The effect of the ionic strength on the functional properties of triheme cytochrome PpcA, the most abundant periplasmic cytochrome in G. sulfurreducens, was investigated by NMR and potentiometric methods. The redox properties of heme IV are the most affected ones. Chemical shift perturbation measurements on the backbone NMR signals, at increasing ionic strength, also showed that the region close to heme IV is the most affected due to the large number of positively charged residues, which confer a highly positive electrostatic surface around this heme. The shielding of these positive charges at high ionic strength explain the observed decrease in the reduction potential of heme IV and shows that PpcA was designed to maintain its functional mechanistic features even at high ionic strength.

2013
Dantas, JM, Tomaz DM, Morgado L, Salgueiro CA.  2013.  Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens. FEBS Letters. 587(16):2662-2668. AbstractWebsite

The cytochrome PccH from Geobacter sulfurreducens (Gs) plays a crucial role in current-consuming fumarate-reducing biofilms. Deletion of pccH gene inhibited completely electron transfer from electrodes toward Gs cells. The pccH gene was cloned and the protein heterologously expressed in Escherichia coli. Complementary biophysical techniques including CD, UV-visible and NMR spectroscopy were used to characterize PccH. This cytochrome contains one low-spin c-type heme with His-Met axial coordination and unusual low-reduction potential. This reduction potential is pH-dependent, within the Gs physiological pH range, and is discussed within the context of the electron transfer mechanisms from electrodes to Gs cells.

Morgado, L, Dantas JM, Simões T, Londer YY, Pokkuluri PR, Salgueiro CA.  2013.  Role of Met58 in the regulation of electron/proton transfer in trihaem cytochrome PpcA from Geobacter sulfurreducens. Bioscience Reports. 33(1):11-22. AbstractWebsite

The bacterium Gs (Geobacter sulfurreducens) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membranes in a process designated as extracellular electron transfer. The trihaem cytochrome PpcA is highly abundant in Gs and is most probably the reservoir of electrons destined for the outer surface. In addition to its role in electron transfer pathways, we have previously shown that this protein could perform e-/H+ energy transduction. This mechanism is achieved by selecting the specific redox states that the protein can access during the redox cycle and might be related to the formation of proton electrochemical potential gradient across the periplasmic membrane. The regulatory role of haem III in the functional mechanism of PpcA was probed by replacing Met58, a residue that controls the solvent accessibility of haem III, with serine, aspartic acid, asparagine or lysine. The data obtained from the mutants showed that the preferred e-/H+ transfer pathway observed for PpcA is strongly dependent on the reduction potential of haem III. It is striking to note that one residue can fine tune the redox states that can be accessed by the trihaem cytochrome enough to alter the functional pathways.

Dantas, JM, Morgado L, Pokkuluri PR, Turner DL, Salgueiro CA.  2013.  Solution structure of a mutant of the triheme cytochrome PpcA from Geobacter sulfurreducens sheds light on the role of the conserved aromatic residue F15. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1827(4):484-492. AbstractWebsite

Extracellular electron transfer is one of the physiological hallmarks of Geobacteraceae. Most of the Geobacter species encode for more than 100 c-type cytochromes which are, in general, poorly conserved between individual species. An exception to this is the PpcA family of periplasmic triheme c-type cytochromes, which are the most abundant proteins in these bacteria. The functional characterization of PpcA showed that it has the necessary properties to couple electron/proton transfer, a fundamental step for ATP synthesis. The detailed thermodynamic characterization of a PpcA mutant, in which the strictly conserved residue phenylalanine 15 was replaced by leucine, showed that the global redox network of cooperativities among heme groups is altered, preventing the mutant from performing a concerted electron/proton transfer. In this work, we determined the solution structure of PpcA F15L mutant in the fully reduced state using NMR spectroscopy by producing 15N-labeled protein. In addition, pH-dependent conformational changes were mapped onto the structure. The mutant structure obtained is well defined, with an average pairwise root-mean-square deviation of 0.36 Å for the backbone atoms and 1.14 Å for all heavy atoms. Comparison between the mutant and wild-type structures elucidated the contribution of phenylalanine 15 in the modulation of the functional properties of PpcA.

2012
Morgado, L, Dantas JM, Bruix M, Londer YY, Salgueiro CA.  2012.  Fine Tuning of Redox Networks on Multiheme Cytochromes from Geobacter sulfurreducens Drives Physiological Electron/Proton Energy Transduction. Bioinorganic Chemistry and Applications. 2012(Article ID 298739):1-9. AbstractWebsite

The bacterium Geobacter sulfurreducens (Gs) can grow in the presence of extracellular terminal acceptors, a property that is currently explored to harvest electricity from aquatic sediments and waste organic matter into microbial fuel cells. A family composed of five triheme cytochromes (PpcA-E) was identified in Gs. These cytochromes play a crucial role by bridging the electron transfer from oxidation of cytoplasmic donors to the cell exterior and assisting the reduction of extracellular terminal acceptors. The detailed thermodynamic characterization of such proteins showed that PpcA and PpcD have an important redox-Bohr effect that might implicate these proteins in the e−/H+ coupling mechanisms to sustain cellular growth. The physiological relevance of the redox-Bohr effect in these proteins was studied by determining the fractional contribution of each individual redox-microstate at different pH values. For both proteins, oxidation progresses from a particular protonated microstate to a particular deprotonated one, over specific pH ranges. The preferred e−/H+ transfer pathway established by the selected microstates indicates that both proteins are functionally designed to couple e−/H+ transfer at the physiological pH range for cellular growth.

Morgado, L, Fernandes AP, Dantas JM, Silva MA, Salgueiro CA.  2012.  On the road to improve the bioremediation and electricity-harvesting skills of Geobacter sulfurreducens: functional and structural characterization of multihaem cytochromes. Biochemical Society transactions. 40(6):1295-1301. AbstractWebsite

Extracellular electron transfer is one of the physiological hallmarks of Geobacter sulfurreducens, allowing these bacteria to reduce toxic and/or radioactive metals and grow on electrode surfaces. Aiming to functionally optimize the respiratory electron-transfer chains, such properties can be explored through genetically engineered strains. Geobacter species comprise a large number of different multihaem c-type cytochromes involved in the extracellular electron-transfer pathways. The functional characterization of multihaem proteins is particularly complex because of the coexistence of several microstates in solution, connecting the fully reduced and oxidized states. NMR spectroscopy has been used to monitor the stepwise oxidation of each individual haem and thus to obtain information on each microstate. For the structural study of these proteins, a cost-effective isotopic labelling of the protein polypeptide chains was combined with the comparative analysis of 1H-13C HSQC (heteronuclear single-quantum correlation) NMR spectra obtained for labelled and unlabelled samples. These new methodological approaches allowed us to study G. sulfurreducens haem proteins functionally and structurally, revealing functional mechanisms and key residues involved in their electron-transfer capabilities. Such advances can now be applied to the design of engineered haem proteins to improve the bioremediation and electricity-harvesting skills of G. sulfurreducens.

Dantas, JM, Morgado L, Londer YY, Fernandes AP, Louro RO, Pokkuluri PR, Schiffer M, Salgueiro CA.  2012.  Pivotal role of the strictly conserved aromatic residue F15 in the cytochrome c7 family. Journal of Biological Inorganic Chemistry. 17(1):11-24. AbstractWebsite

Cytochromes c7 are periplasmic triheme proteins that have been reported exclusively in δ-proteobacteria. The structures of five triheme cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these proteins - phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c7 family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism, by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis of 1H-15N heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the α-helix placed between hemes I and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA, changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer.

2011
Dantas, JM, Saraiva IH, Morgado L, Silva MA, Schiffer M, Salgueiro CA, Louro RO.  2011.  Orientation of the axial ligands and magnetic properties of the hemes in the cytochromec7 family from Geobacter sulfurreducens determined by paramagnetic NMR. Dalton Transactions. 40(47):12713-12718. AbstractWebsite

Geobacter sulfurreducens is a sediment bacterium that contains a large number of multiheme cytochromes. The family of five c7 triheme periplasmic cytochromes from Geobacter sulfurreducens shows structural diversity of the heme core. Structural characterization of the relative orientation of the axial ligands of these proteins by 13C-paramagnetic NMR was carried out. The structures in solution were compared with those obtained by X-ray crystallography. For some hemes significant differences exist between the two methods such that orientation of the magnetic axes obtained from NMR data and the orientation taken from the X-ray coordinates differ. The results allowed the orientation of the magnetic axes to be defined confidently with respect to the heme frame in solution, a necessary step for the use of paramagnetic constraints to improve the complete solution structure of these proteins.

Pokkuluri, PR, Londer YY, Duke NEC, Pessanha M, Yang X, Orshonsky V, Orshonsky L, Erickson J, Zagyanskiy Y, Salgueiro CA, Schiffer M.  2011.  Structure of a novel dodecaheme cytochrome c from Geobacter sulfurreducens reveals an extended 12 nm protein with interacting hemes. Journal of Structural Biology. 174(1):223-233. AbstractWebsite

Multiheme cytochromes c are important in electron transfer pathways in reduction of both soluble and insoluble Fe(III) by Geobacter sulfurreducens. We determined the crystal structure at 3.2 Å resolution of the first dodecaheme cytochrome c (GSU1996) along with its N-terminal and C-terminal hexaheme fragments at 2.6 and 2.15 Å resolution, respectively. The macroscopic reduction potentials of the full-length protein and its fragments were measured. The sequence of GSU1996 can be divided into four c7-type domains (A, B, C and D) with homology to triheme cytochromes c7. In cytochromes c7 all three hemes are bis–His coordinated, whereas in c7-type domains the last heme is His–Met coordinated. The full-length GSU1996 has a 12 nm long crescent shaped structure with the 12 hemes arranged along a polypeptide to form a “nanowire” of hemes; it has a modular structure. Surprisingly, while the C-terminal half of the protein consists of two separate c7-type domains (C and D) connected by a small linker, the N-terminal half of the protein has two c7-type domains (A and B) that form one structural unit. This is also observed in the AB fragment. There is an unexpected interaction between the hemes at the interface of domains A and B, which form a heme-pair with nearly parallel stacking of their porphyrin rings. The hemes adjacent to each other throughout the protein are within van der Waals distance which enables efficient electron exchange between them. For the first time, the structural details of c7-type domains from one multiheme protein were compared.

2009
Pokkuluri, PR, Londer YY, Wood SJ, Duke NEC, Morgado L, Salgueiro CA, Schiffer M.  2009.  Outer membrane cytochrome c, OmcF, from Geobacter sulfurreducens: High structural similarity to an algal cytochrome c6. Proteins: Structure, Function, and Bioinformatics. 74(1):266-270. AbstractWebsite

No abstract included.

2008
Morgado, L, Bruix M, Orshonsky V, Londer YY, Duke NEC, Yang X, Pokkuluri PR, Schiffer M, Salgueiro CA.  2008.  Structural insights into the modulation of the redox properties of two Geobacter sulfurreducens homologous triheme cytochromes. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1777(9):1157-1165. AbstractWebsite

The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III–I–IV for PpcB, as opposed to I–IV–III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.

Pokkuluri, PR, Pessanha M, Londer YY, Wood SJ, Duke NEC, Wilton R, Catarino T, Salgueiro CA, Schiffer M.  2008.  Structures and Solution Properties of Two Novel Periplasmic Sensor Domains with c-Type Heme from Chemotaxis Proteins of Geobacter sulfurreducens: Implications for Signal Transduction. Journal of Molecular Biology. 377(5):1498-1517. AbstractWebsite

Periplasmic sensor domains from two methyl-accepting chemotaxis proteins from Geobacter sulfurreducens (encoded by genes GSU0935 and GSU0582) were expressed in Escherichia coli. The sensor domains were isolated, purified, characterized in solution, and their crystal structures were determined. In the crystal, both sensor domains form swapped dimers and show a PAS-type fold. The swapped segment consists of two helices of about 45 residues at the N terminus with the hemes located between the two monomers. In the case of the GSU0582 sensor, the dimer contains a crystallographic 2-fold symmetry and the heme is coordinated by an axial His and a water molecule. In the case of the GSU0935 sensor, the crystals contain a non-crystallographic dimer, and surprisingly, the coordination of the heme in each monomer is different; monomer A heme has His-Met ligation and monomer B heme has His-water ligation as found in the GSU0582 sensor. The structures of these sensor domains are the first structures of PAS domains containing covalently bound heme. Optical absorption, electron paramagnetic resonance and NMR spectroscopy have revealed that the heme groups of both sensor domains are high-spin and low-spin in the oxidized and reduced forms, respectively, and that the spin-state interconversion involves a heme axial ligand replacement. Both sensor domains bind NO in their ferric and ferrous forms but bind CO only in the reduced form. The binding of both NO and CO occurs via an axial ligand exchange process, and is fully reversible. The reduction potentials of the sensor domains differ by 95 mV (− 156 mV and − 251 mV for sensors GSU0582 and GSU0935, respectively). The swapped dimerization of these sensor domains and redox-linked ligand switch might be related to the mechanism of signal transduction by these chemotaxis proteins.

2004
Pokkuluri, PR, Londer YY, Duke NEC, Erickson J, Pessanha M, Salgueiro CA, Schiffer M.  2004.  Structure of a novel c7-type three-heme cytochrome domain from a multidomain cytochrome c polymer. Protein Science. 13(6):1684-1692. AbstractWebsite

The structure of a novel c7-type cytochrome domain that has two bishistidine coordinated hemes and one heme with histidine, methionine coordination (where the sixth ligand is a methionine residue) was determined at 1.7 Å resolution. This domain is a representative of domains that form three polymers encoded by the Geobacter sulfurreducens genome. Two of these polymers consist of four and one protein of nine c7-type domains with a total of 12 and 27 hemes, respectively. Four individual domains (termed A, B, C, and D) from one such multiheme cytochrome c (ORF03300) were cloned and expressed in Escherichia coli. The domain C produced diffraction quality crystals from 2.4 M sodium malonate (pH 7). The structure was solved by MAD method and refined to an R-factor of 19.5% and R-free of 21.8%. Unlike the two c7 molecules with known structures, one from G. sulfurreducens (PpcA) and one from Desulfuromonas acetoxidans where all three hemes are bishistidine coordinated, this domain contains a heme which is coordinated by a methionine and a histidine residue. As a result, the corresponding heme could have a higher potential than the other two hemes. The apparent midpoint reduction potential, Eapp, of domain C is −105 mV, 50 mV higher than that of PpcA.

2001
Salgueiro, CA, da Costa PN, Turner DL, Messias AC, van Dongen WMAM, Saraiva LM, Xavier AV.  2001.  Effect of Hydrogen-Bond Networks in Controlling Reduction Potentials in Desulfovibrio vulgaris (Hildenborough) Cytochrome c3 Probed by Site-Specific Mutagenesis. Biochemistry. 40(32):9709-9716. AbstractWebsite

Cytochromes c3 isolated from Desulfovibrio spp. are periplasmic proteins that play a central role in energy transduction by coupling the transfer of electrons and protons from hydrogenase. Comparison between the oxidized and reduced structures of cytochrome c3 isolated from Desulfovibrio vulgaris (Hildenborough) show that the residue threonine 24, located in the vicinity of heme III, reorients between these two states [Messias, A. C., Kastrau, D. H. W., Costa, H. S., LeGall, J., Turner, D. L., Santos, H., and Xavier, A. V. (1998) J. Mol. Biol. 281, 719−739]. Threonine 24 was replaced with valine by site-directed mutagenesis to elucidate its effect on the redox properties of the protein. The NMR spectra of the mutated protein are very similar to those of the wild type, showing that the general folding and heme core architecture are not affected by the mutation. However, thermodynamic analysis of the mutated cytochrome reveals a large alteration in the microscopic reduction potential of heme III (75 and 106 mV for the protonated forms of the fully reduced and oxidized states, respectively). The redox interactions involving this heme are also modified, while the remaining heme−heme interactions and the redox−Bohr interactions are less strongly affected. Hence, the order of oxidation of the hemes in the mutated cytochrome is different from that in the wild type, and it has a higher overall affinity for electrons. This is consistent with the replacement of threonine 24 by valine preventing the formation of a network of hydrogen bonds, which stabilizes the oxidized state. The mutated protein is unable to perform a concerted two-electron step between the intermediate oxidation stages, 1 and 3, which can occur in the wild-type protein. Thus, replacing a single residue unbalances the global network of cooperativities tuned to control thermodynamically the directionality of the stepwise electron transfer and may affect the functionality of the protein.

1998
Saraiva, LM, Salgueiro CA, da Costa PN, Messias AC, Legall J, van Dongen WMAM, Xavier AV.  1998.  Replacement of Lysine 45 by Uncharged Residues Modulates the Redox-Bohr Effect in Tetraheme Cytochrome c3 of Desulfovibrio vulgaris (Hildenborough). Biochemistry. 37(35):12160-12165. AbstractWebsite

The structural basis for the pH dependence of the redox potential in the tetrahemic Desulfovibrio vulgaris (Hildenborough) cytochrome c3 was investigated by site-directed mutagenesis of charged residues in the vicinity of heme I. Mutation of lysine 45, located in the neighborhood of the propionates of heme I, by uncharged residues, namely threonine, glutamine and leucine, was performed. The replacement of a conserved charged residue, aspartate 7, present in the N-terminal region and near heme I was also attempted. The analysis of the redox interactions as well as the redox-Bohr behavior of the mutated cytochromes c3 allowed the conclusion that residue 45 has a functional role in the control of the pKa of the propionate groups of heme I and confirms the involvement of this residue in the redox-Bohr effect.

1996
Saraiva, LM, Salgueiro CA, Legall J, van Dongen WMAM, Xavier AV.  1996.  Site-directed mutagenesis of a phenylalanine residue strictly conserved in cytochromes c3. Journal of Biological Inorganic Chemistry. 1(6):542-550. AbstractWebsite

Reduction of the haems in tetrahaem cytochromes c3 is a cooperative process, i.e., reduction of each of the haems depends on the redox states of the other haems. Furthermore, electron transfer is coupled to proton transfer (redox-Bohr effect). Two of its haems and a strictly conserved nearby phenylalanine residue, F20, in Desulfovibrio vulgaris (Hildenborough) cytochrome c3 form a structural motif that is present in all cytochromes c3 and also in cytochrome c oxidase. A putative role for this phenylalanine residue in the cooperativity of haem reduction was investigated. Therefore, this phenylalanine was replaced, with genetic techniques, by isoleucine and tyrosine in D. vulgaris (Hildenborough) cytochrome c3. Cyclic voltammetry studies revealed a small increase (30 mV) in one of the macroscopic redox potentials in the mutated cytochromes. EPR showed that the main alterations occurred in the vicinity of haem I, the haem closest to residue 20 and one of the haems responsible for positive cooperativities in electron transfer of D. vulgaris cytochrome c3. NMR studies of F20I cytochrome c3 demonstrated that the haem core architecture is maintained and that the more affected haem proton groups are those near the mutation site. NMR redox titrations of this mutated protein gave evidence for only small changes in the relative redox potentials of the haems. However, electron/electron and proton/electron cooperativity are maintained, indicating that this aromatic residue has no essential role in these processes. Furthermore, chemical modification of the N-terminal amino group of cytochrome c3 backbone, which is also very close to haem I, had no effect on the network of cooperativities.