Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U [V] W X Y Z   [Show ALL]
V
Vieira, Tânia, Jorge Carvalho Silva, Botelho A. M. do Rego, João Borges Borges, and Célia Henriques. "Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering." Materials Science and Engineering: C 103 (2019): 109819. AbstractWebsite

The composition and architecture of a scaffold determine its supportive role in tissue regeneration. In this work, we demonstrate the feasibility of obtaining a porous electrospun fibrous structure from biodegradable polyurethanes (Pus) synthesized using polycaprolactone-diol as soft segment and, as chain extenders, chitosan (CS) and/or dimethylol propionic acid. Fourier transform infrared spectroscopy and proton nuclear magnetic resonance confirmed the syntheses. Fibre mats' properties were analysed and compared with those of solvent cast films. Scanning electron microscopy images of the electrospun scaffolds revealed fibres with diameters around 1 μm. From tensile tests, we found that Young's modulus increases with CS content and is higher for films (2.5 MPa to 6.5 MPa) than for the corresponding fibre mats (0.8 MPa to 3.2 MPa). The use of CS as the only chain extender improves recovery ratio and resilience. From X-ray diffraction, a higher crystalline degree was identified in fibre mats than in the corresponding films. Films' wettability was enhanced by the presence of CS as shown by the decrease of water contact angle. X-ray photoelectron spectroscopy revealed that while ester groups are predominant at the films' surface, ester and urethanes are present in similar concentrations at fibres' surface, favouring the interaction with water molecules. Both films and fibres undergo hydrolytic degradation. In vitro evaluation was performed with human dermal fibroblasts. No PU sample revealed cytotoxicity. Cells adhered to fibre mats better than to films and proliferation was observed only for samples of CS-containing PUs. Results suggest that electrospun fibres of CS-based polyurethanes are good candidate scaffolds for soft tissue engineering.

Vieira, Tânia, Jorge Carvalho Silva, João Paulo Borges, and Célia Henriques. "Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineering." European Polymer Journal 103 (2018): 271-281. AbstractWebsite

Biodegradable polyurethanes have been studied as scaffolds for tissue engineering due to their adjustable physico-chemical properties. In this work, we synthesized a biodegradable gelatin-based poly(urethane urea) using polycaprolactone-diol, as soft segment, and isophorone diisocyanate and gelatin from cold water fish skin as hard segment. The synthesis was confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance and the influence of the amount of gelatin introduced in the polymer backbone was analyzed by thermal analysis. Gelatin-based poly(urethane urea) electrospun fibrous mats and solvent cast films were then produced and their physico-chemical and biological properties studied. They present an amorphous structure, elastomeric behavior and water contact angles typical of hydrophobic surfaces. Hydrolytic degradation was analyzed in phosphate buffer saline (PBS), lipase and trypsin solutions. No mass changes were detected during 37 days in PBS and trypsin while significant degradation by lipase was observed. Human foetal foreskin fibroblasts were seeded on the fibrous mats and films. Populations were evaluated by colorimetric cell viability assays and morphology by fluorescence imaging. The substrates supported cell adhesion and proliferation. The novel gelatin-based poly(urethane urea) fibrous mats offer attractive physico-chemical and biological properties for soft tissue engineering applications.