Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
Teixeira, Silvia Soreto, Manuel P. F. Graça, José Lucas, Manuel Almeida Valente, Paula I. P. Soares, Maria Carmo Lança, Tânia Vieira, Jorge Carvalho Silva, João Paulo Borges, Luiza-Izabela Jinga, Gabriel Socol, Cristiane Mello Salgueiro, José Nunes, and Luís C. Costa. "Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine." Nanomaterials 11 (2021): 193. AbstractWebsite

The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of ε′ (≈10 up to ≈14) with a tanδ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g−1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.

Tipa, Cezar, Maria Teresa Cidade, Tânia Vieira, Jorge Carvalho Silva, Paula I. P. Soares, and João Paulo Borges. "A New Long-Term Composite Drug Delivery System Based on Thermo-Responsive Hydrogel and Nanoclay." Nanomaterials 11 (2021): 25. AbstractWebsite

Several problems and limitations faced in the treatment of many diseases can be overcome by using controlled drug delivery systems (DDS), where the active compound is transported to the target site, minimizing undesirable side effects. In situ-forming hydrogels that can be injected as viscous liquids and jellify under physiological conditions and biocompatible clay nanoparticles have been used in DDS development. In this work, polymer–clay composites based on Pluronics (F127 and F68) and nanoclays were developed, aiming at a biocompatible and injectable system for long-term controlled delivery of methylene blue (MB) as a model drug. MB release from the systems produced was carried out at 37 °C in a pH 7.4 medium. The Pluronic formulation selected (F127/F68 18/2 wt.%) displayed a sol/gel transition at approx. 30 °C, needing a 2.5 N force to be injected at 25 °C. The addition of 2 wt.% of Na116 clay decreased the sol/gel transition to 28 °C and significantly enhanced its viscoelastic modulus. The most suitable DDS for long-term application was the Na116-MB hybrid from which, after 15 days, only 3% of the encapsulated MB was released. The system developed in this work proved to be injectable, with a long-term drug delivery profile up to 45 days.