Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Faria, Jaime, Bruno Dionísio, Iris Soares, Ana Catarina Baptista, Ana Cláudia Marques, Lídia Gonçalves, Ana Bettencourt, Carlos Baleizão, and Isabel Ferreira. "Cellulose acetate fibres loaded with daptomycin for metal implant coatings." Carbohydrate polymers (2021): 118733. AbstractWebsite

Multifunctional polymeric coatings containing drug delivery vehicles can play a key role in preventing/reducing biofilm formation on implant surfaces. Their requirements are biocompatibility, good adhesion, and controllable drug release. Although cellulose acetate (CA) films and membranes are widely studied for scaffolding, their applications as a protective coating and drug delivery vehicle for metal implants are scarce. The reason is that adhesion to stainless steel (SS) substrates is non-trivial. Grinding SS substrates enhances the adhesion of dip-coated CA films while the adhesion of electrospun CA membranes is improved by an electrosprayed chitosan intermediate layer. PMMA microcapsules containing daptomycin have been successfully incorporated into CA films and fibres. The released drug concentration of 3 x10-3 mg/mL after 120 minutes was confirmed from the peak luminescence intensity under UV radiation of simulated body fluid (SBF) after immersion of the fibres.

Faria, Jaime, Coro Echeverria, João Paulo Borges, Maria Helena Godinho, and Paula I. P. Soares. "Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning." RSC Advances 7 (2017): 48972-48979. AbstractWebsite

The incorporation of thermosensitive microgels that can act as active sites into polymeric fibers through colloidal electrospinning originates multifunctional, highly porous, and biocompatible membranes suitable for biomedical applications. The use of polyvinylpyrrolidone (PVP), a biocompatible, water-soluble polymer as a fiber template, not only allows the use of a simple set-up to produce composite membranes, but also avoids the use of organic solvents to prepare such systems. Further crosslinking with ultraviolet (UV) radiation avoids membrane dissolution in physiological conditions. Highly porous, UV crosslinked composite membranes with monodisperse mean fiber diameters around 530 nm were successfully produced. These composite membranes showed a Young Modulus of 22 MPa, and an ultimate tensile strength of 3 MPa, accessed in the mechanical tests. Furthermore, the same composite membranes were able to swell about 30 times their weight after 1 hour in aqueous medium. In this work composite multifunctional membranes were designed and extensively studied. PVP, a biocompatible water-soluble polymer, was used as a fiber template to incorporate thermoresponsive poly-(N-isopropylacrylamide) (PNIPAAm)-based microgels into the composite membrane using colloidal electrospinning. The design of multifunctional membranes can be further tailored to several biomedical applications such as temperature-controlled drug delivery systems.

Ferreira, José Luis, Susana Gomes, Célia Henriques, João Paulo Borges, and Jorge Carvalho Silva. "Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and In Vitro evaluation." Journal of Applied Polymer Science 131 (2014): 41068. AbstractWebsite

The electrospinning of polycaprolactone (PCL) dissolved in glacial acetic acid and the characterization of the resultant nonwoven fiber mats is reported in this work. For comparison purposes, PCL fiber mats were also obtained by electrospinning the polymer dissolved in chloroform. Given the processing parameters chosen, results show that 14 and 17 wt % PCL solutions are not viscous enough and yield beaded fibers, 20 and 23 wt % solutions give rise to high quality fibers and 26 wt % solutions yield mostly irregular and fused fibers. The nonwoven mats are highly porous, retain the high tensile strain of PCL, and the fibers are semicrystalline. Cells adhere and proliferate equally well on all mats, irrespective of the solvent used in their production. In conclusion, mats obtained by electrospinning PCL dissolved in acetic acid are also a good option to consider when producing scaffolds for tissue engineering. Moreover, acetic acid is miscible with polar solvents, which may allow easier blending of PCL with hydrophilic polymers and therefore achieve the production of electrospun nanofibers with improved properties.

Ferreira, Isabel, Ana Catarina Baptista, Joaquim Pratas Leitão, Jorge Soares, Elvira Fortunato, Rodrigo Martins, and João Paulo Borges. "Strongly Photosensitive and Fluorescent F8T2 Electrospun Fibers." Macromol Mater Eng 298 (2013): 174-180. AbstractWebsite

Electrospun fibers of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2) with exceptional electro-optical performance are obtained. The I/T characteristics measured in fibers with 7–15 µm diameter and 1 mm length show a semiconductor behavior; their thermal activation energy is 0.5 eV and the dark conductivity at RT is 5 × 10−9 (Ω cm)−1. Besides exhibiting a photosensitivity of about 60 under white light illumination with a light power intensity of 25 mW · cm−2, the fibers also attain RT photoluminescence in the cyan, yellow, and red wavelength range under ultraviolet, blue, and green light excitation, respectively. Optical microscope images of F8T2 reveal homogeneous electrospun fibers, which are in good agreement with the uniformly radial fluorescence observed.

Franco, Patrícia Q., Carlos João, Jorge Carvalho Silva, and João Paulo Borges. "Electrospun hydroxyapatite fibers from a simple sol–gel system." Materials Letters 67 (2012): 233-236. AbstractWebsite

This work reports the production of hydroxyapatite (HA) sub-micron fibers by combining electrospinning and a non-alkoxide sol–gel system, using cheap precursors. Phosphorus pentoxide (P2O5) and calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) were used as precursors of phosphorus and calcium, respectively. The fibers were electrospun from a mixture of the gel formed from the system Ca(NO3)2.4H2O/P2O5 with polymeric solutions of polyvinylpyrrolidone (PVP) in water and ethanol/water mixtures. The fibers were analyzed for their morphology (Scanning Electron Microscopy, SEM), chemical composition (Fourier Transform Infrared Spectroscopy, FTIR) and structure (X-ray diffraction, XRD). The fibers obtained were composed mainly of type B carbonated HA with traces of β-tricalcium phosphate (β-TCP). SEM analysis revealed that increasing the concentration of water in the solvent system, used in the preparation of electrospinning solutions, led to fibers with smaller diameters and narrower diameter distribution.