Publications

Export 6 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Electronic and magnetic properties of nickel-substituted rubredoxin: a variable-temperature magnetic circular dichroism study, Kowal, Andrzej T., Zambrano Isabel C., Moura Isabel, Moura Jose J. G., Legall Jean, and Johnson Michael K. , Inorganic Chemistry, 1988/04/01, Volume 27, Number 7, p.1162-1166, (1988) AbstractWebsite
n/a
A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane, Zhang, Z., Xia S., Leonard D., Jaffrezic-Renault N., Zhang J., Bessueille F., Goepfert Y., Wang X., Chen L., Zhu Z., Zhao J., Almeida M. G., and Silveira C. M. , Biosensors & Bioelectronics, Feb 15, Volume 24, Number 6, p.1574-9, (2009) AbstractWebsite

A conductometric biosensor for nitrite detection was developed using cytochrome c nitrite reductase (ccNiR) extracted from Desulfovibrio desulfuricans ATCC 27774 cells immobilized on a planar interdigitated electrode by cross-linking with saturated glutaraldehyde (GA) vapour in the presence of bovine serum albumin, methyl viologen (MV), Nafion, and glycerol. The configuration parameters for this biosensor, including the enzyme concentration, ccNiR/BSA ratio, MV concentration, and Nafion concentration, were optimized. Various experimental parameters, such as sodium dithionite added, working buffer solution, and temperature, were investigated with regard to their effect on the conductance response of the biosensor to nitrite. Under the optimum conditions at room temperature (about 25 degrees C), the conductometric biosensor showed a fast response to nitrite (about 10s) with a linear range of 0.2-120 microM, a sensitivity of 0.194 microS/microM [NO(2)(-)], and a detection limit of 0.05 microM. The biosensor also showed satisfactory reproducibility (relative standard deviation of 6%, n=5). The apparent Michaelis-Menten constant (K(M,app)) was 338 microM. When stored in potassium phosphate buffer (100mM, pH 7.6) at 4 degrees C, the biosensor showed good stability over 1 month. No obvious interference from other ionic species familiar in natural waters was detected. The application experiments show that the biosensor is suitable for use in real water samples.

Orange protein from Desulfovibrio alaskensis G20: insights into the Mo-Cu cluster protein-assisted synthesis, Carepo, M. S., Carreira C., Grazina R., Zakrzewska M. E., Dolla A., Aubert C., Pauleta S. R., Moura J. J. G., and Moura I. , J Biol Inorg Chem, Volume 21, p.53-62, (2016)
Resonance Raman study on the iron-sulfur centers of Desulfovibrio gigas aldehyde oxidoreductase, Zhelyaskov, V., Yue K. T., Legall J., Barata B. A., and Moura J. J. , Biochim Biophys Acta, Oct 25, Volume 1252, Number 2, p.300-4, (1995) AbstractWebsite

Resonance Raman spectra of the molybdenum containing aldehyde oxidoreductase from Desulfovibrio gigas were recorded at liquid nitrogen temperature with various excitation wavelengths. The spectra indicate that all the iron atoms are organised in [2Fe-2S] type centers consistent with cysteine ligations. No vibrational modes involving molybdenum could be clearly identified. The features between 280 and 420 cm-1 are similar but different from those of typical plant ferredoxin-like [2Fe-2S] cluster. The data are consistent with the presence of a plant ferredoxin-like cluster (center I) and a unique [2Fe-2S] cluster (center II), as suggested by other spectroscopic studies. The Raman features of center II are different from those of other [2Fe-2S] clusters in proteins. In addition, a strong peak at ca. 683 cm-1, which is not present in other [2Fe-2S] clusters in proteins, was observed with purple excitation (406.7-413.1 nm). The peak is assigned to enhanced cysteinyl C-S stretching in center II, suggesting a novel geometry for this center.

The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3, Ma, J. G., Zhang J., Franco R., Jia S. L., Moura I., Moura J. J., Kroneck P. M., and Shelnutt J. A. , Biochemistry, Sep 8, Volume 37, Number 36, p.12431-42, (1998) AbstractWebsite

Resonance Raman (RR) spectroscopy, molecular mechanics (MM) calculations, and normal-coordinate structural decomposition (NSD) have been used to investigate the conformational differences in the hemes in ferricytochromes c3. NSD analyses of heme structures obtained from X-ray crystallography and MM calculations of heme-peptide fragments of the cytochromes c3 indicate that the nonplanarity of the hemes is largely controlled by a fingerprint peptide segment consisting of two heme-linked cysteines, the amino acids between the cysteines, and the proximal histidine ligand. Additional interactions between the heme and the distal histidine ligand and between the heme propionates and the protein also influence the heme conformation, but to a lesser extent than the fingerprint peptide segment. In addition, factors that influence the folding pattern of the fingerprint peptide segment may have an effect on the heme conformation. Large heme structural differences between the baculatum cytochromes c3 and the other proteins are uncovered by the NSD procedure [Jentzen, W., Ma, J.-G., and Shelnutt, J. A. (1998) Biophys. J. 74, 753-763]. These heme differences are mainly associated with the deletion of two residues in the covalently linked segment of hemes 4 for the baculatum proteins. Furthermore, some of these structural differences are reflected in the RR spectra. For example, the frequencies of the structure-sensitive lines (nu4, nu3, and nu2) in the high-frequency region of the RR spectra are lower for the Desulfomicrobium baculatum cytochromes c3 (Norway 4 and 9974) than for the Desulfovibrio (D.) gigas, D. vulgaris, and D. desulfuricans strains, consistent with a more ruffled heme. Spectral decompositions of the nu3 and nu10 lines allow the assignment of the sublines to individual hemes and show that ruffling, not saddling, is the dominant factor influencing the frequencies of the structure-sensitive Raman lines. The distinctive spectra of the baculatum strains investigated are a consequence of hemes 2 and 4 being more ruffled than is typical of the other proteins.

Structural stability of adenylate kinase from the sulfate-reducing bacteria Desulfovibrio gigas, Gavel, O. Y., Bursakov S. A., Pina D. G., Zhadan G. G., Moura J. J., Moura I., and Shnyrov V. L. , Biophys Chem, Jul 1, Volume 110, Number 1-2, p.83-92, (2004) AbstractWebsite

A novel adenylate kinase (AK) has recently been purified from Desulfovibrio gigas and characterized as a Co(2+)/Zn(2+)-containing enzyme: this is an unusual characteristic for AKs from Gram-negative bacteria, in which these enzymes are normally devoid of metals. Here, we studied the conformational stability of holo- and apo-AK as a function of temperature by differential scanning calorimetry (DSC), circular dichroism (CD), and intrinsic fluorescence spectroscopy. The thermal unfolding of AK is a cooperative two-state process, and is sufficiently reversible in the 9-11 pH range, that can be correctly interpreted in terms of a simple two-state thermodynamic model. The spectral parameters as monitored by ellipticity changes in the CD spectra of the enzyme as well as the decrease in tryptophan intensity emission upon heating were seen to be good complements to the highly sensitive but integral DSC-method.