Publications

Export 108 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Screen‐Printed Electrodes Testing for Detection of Potential Stress Biomarkers in Sweat, M.J., Nunes, G.N. Valério, A. Samhan‐Arias, J.J.G. Moura, C. Rouco, Sousa J. P., and C.M. Cordas , Electrocatalysis, Volume 13, p.299–305, (2022)
The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3, Ma, J. G., Zhang J., Franco R., Jia S. L., Moura I., Moura J. J., Kroneck P. M., and Shelnutt J. A. , Biochemistry, Sep 8, Volume 37, Number 36, p.12431-42, (1998) AbstractWebsite

Resonance Raman (RR) spectroscopy, molecular mechanics (MM) calculations, and normal-coordinate structural decomposition (NSD) have been used to investigate the conformational differences in the hemes in ferricytochromes c3. NSD analyses of heme structures obtained from X-ray crystallography and MM calculations of heme-peptide fragments of the cytochromes c3 indicate that the nonplanarity of the hemes is largely controlled by a fingerprint peptide segment consisting of two heme-linked cysteines, the amino acids between the cysteines, and the proximal histidine ligand. Additional interactions between the heme and the distal histidine ligand and between the heme propionates and the protein also influence the heme conformation, but to a lesser extent than the fingerprint peptide segment. In addition, factors that influence the folding pattern of the fingerprint peptide segment may have an effect on the heme conformation. Large heme structural differences between the baculatum cytochromes c3 and the other proteins are uncovered by the NSD procedure [Jentzen, W., Ma, J.-G., and Shelnutt, J. A. (1998) Biophys. J. 74, 753-763]. These heme differences are mainly associated with the deletion of two residues in the covalently linked segment of hemes 4 for the baculatum proteins. Furthermore, some of these structural differences are reflected in the RR spectra. For example, the frequencies of the structure-sensitive lines (nu4, nu3, and nu2) in the high-frequency region of the RR spectra are lower for the Desulfomicrobium baculatum cytochromes c3 (Norway 4 and 9974) than for the Desulfovibrio (D.) gigas, D. vulgaris, and D. desulfuricans strains, consistent with a more ruffled heme. Spectral decompositions of the nu3 and nu10 lines allow the assignment of the sublines to individual hemes and show that ruffling, not saddling, is the dominant factor influencing the frequencies of the structure-sensitive Raman lines. The distinctive spectra of the baculatum strains investigated are a consequence of hemes 2 and 4 being more ruffled than is typical of the other proteins.

Two-dimensional 1H NMR studies on Desulfovibrio gigas ferredoxins. Assignment of the iron-sulfur cluster cysteinyl ligand protons, Macedo, Anjos L., Palma Nuno P., Moura Isabel, Legall Jean, Wray Victor, and Moura José J. G. , Magnetic Resonance in Chemistry, Volume 31, Number 13, p.S59-S67, (1993) AbstractWebsite

1D and 2D 1H NMR studies are reported on the oxidized and reduced [4Fe-4S] cluster of Desulfovibrio gigas ferredoxin I (Fdl). Several low-field contact shifted resonances (fast relaxing) are assigned to β-CH2 and α-CH coordinated cysteinyl residues. NOESY patterns (supported by 1D NOE experiments) resolves four pairs of geminal β-CH2 protons at low-field. The cluster ligands are assigned non-specifically to Cys8, Cys11, Cys14 and Cys50, based on the X-ray structural analysis available for the oligomeric form, FdII, that contains a single [3Fe-4S] cluster. It was indicated in this case that Cys11 is not bound to the trinuclear cluster but is tilted towards the solvent. The presence of four pairs of geminal β-CH2 protons for FdI unambiguously proves the occupancy of the fourth site of the [3Fe-4S] complex and implies the coordination of the Cys11 at the cluster. Analysis of the oxidized form of FdII, using the same methodology as described for FdI, supports the presence of three cysteinyl ligands in the [3Fe-4S] core. Further, the combined use of the X-ray coordinates enables the specific assignment of the three cysteinyl ligands of the cluster, extending a previous assignment of Cys50. In addition, very broad resonances were detected for the reduced form of FdII in the low-field region around 200 ppm and in the high field region around −80 ppm.

Thiol/disulfide formation associated with the redox activity of the [Fe3S4] cluster of Desulfovibrio gigas ferredoxin II. 1H NMR and Mossbauer spectroscopic study, Macedo, A. L., Moura I., Surerus K. K., Papaefthymiou V., Liu M. Y., Legall J., Munck E., and Moura J. J. , J Biol Chem, Mar 18, Volume 269, Number 11, p.8052-8, (1994) AbstractWebsite

Desulfovibrio gigas ferredoxin II (FdII) is a small protein (alpha 4 subunit structure as isolated; M(r) approximately 6400 per subunit; 6 cysteine residues) containing one Fe3S4 cluster per alpha-subunit. The x-ray structure of FdII has revealed a disulfide bridge formed by Cys-18 and Cys-42 approximately 13 A away from the center of the cluster; moreover, the x-ray structure indicates that Cys-11 forms a disulfide bridge with a methanethiol. In the oxidized state, FdIIoxm the 1H NMR spectra, exhibit four low-field contact-shifted resonances at 29, 24, 18, and 15.5 ppm whereas the reduced state, FdIIR (S = 2), yields two features at +18.5 and -11 ppm. In the course of studying the redox behavior of FdII, we have discovered a stable intermediate, FdIIint, that yields 1H resonances at 24, 21.5, 21, and 14 ppm. This intermediate appears in the potential range where the cluster (E'0 approximately -130 mV) is reduced from the [Fe3S4]1+ to the [Fe3S4]0 state. FdIIint is observed during reductive titrations with dithionite or hydrogen/hydrogenase or after partial oxidation of FdIIR by 2,6-dichlorophenolindophenol or air. Our studies show that a total of three electrons per alpha-subunit are transferred to FdII. Our experiments demonstrate the absence of a methanethiol-Cys-11 linkage in our preparations, and we propose that two of the three electrons are used for the reduction of the disulfide bridge. Mossbauer (and EPR) studies show that the Fe3S4 cluster of FdIIint is at the same oxidation level as FdIIox, but indicate some changes in the exchange couplings among the three ferric sites. Our data suggest that the differences in the NMR and Mossbauer spectra of FdIIox and FdIIint result from conformational changes attending the breaking or formation of the disulfide bridge. The present study suggests that experiments be undertaken to explore an in vivo redox function for the disulfide bridge.

Temperature-dependent proton NMR investigation of the electronic structure of the trinuclear iron cluster of the oxidized Desulfovibrio gigas ferredoxin II, Macedo, Anjos L., Moura Isabel, Moura Jose J. G., Legall Jean, and Huynh Boi Hanh , Inorganic Chemistry, 1993/03/01, Volume 32, Number 7, p.1101-1105, (1993) AbstractWebsite
n/a
Characterization of a 7Fe ferredoxin isolated from the marine denitrifier Pseudomonas nautica strain 617: spectroscopic and electrochemical studies, Macedo, A. L., Besson S., Moreno C., Fauque G., Moura J. J., and Moura I. , Biochem Biophys Res Commun, Dec 13, Volume 229, Number 2, p.524-30, (1996) AbstractWebsite

A 7Fe ferredoxin, isolated from the marine denitrifier Pseudomonas nautica strain 617, was characterized. The NH2-terminal sequence analysis, performed until residue number 56, shows a high similarity with the 7Fe ferredoxins isolated from Azotobacter vinelandii, Pseudomonas putida, and Pseudomonas stutzeri. EPR and NMR spectroscopies identify the presence of both [3Fe-4S] and [4Fe-4S] clusters, with cysteinyl coordination. The electrochemical studies on [Fe-S] clusters show that a fast diffusion-dominated electron transfer, promoted by Mg(II), takes place between the ferredoxin and the glassy carbon electrode. Square wave voltammetry studies gave access to the electrosynthesis of a 4Fe center formed within the [3Fe-4S] core. The [3Fe-4S] cluster exhibited two reduction potentials at -175 and -680 +/- 10 mV and the [4Fe-4S] cluster was characterized by an unusually low reduction potential of -715 +/- 10 mV, at pH 7.6

Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: a kinetic and mechanistic study, Maia, L. B., Fonseca L., Moura I., and Moura J. J. G. , J Am Chem Soc, Volume 138, p.8834-8846, (2016) Website
Detection of nitric oxide by electron paramagnetic resonance spectroscopy: spin-trapping with iron-dithiocarbamates, Maia, L. B., and Moura J. J. G. , Methods Mol Biol, Volume 1424, p.81-102, (2016) Website
Mononuclear molybdenum-containing enzymes, Maia, L., and Moura J. J. G. , Reference Module in Chemistry, Volume Molecular Sciences and Chemical Engineering, p.1 - 19, (2018) Website
Molybdenum and tungsten-dependent formate dehydrogenases, Maia, L. B., Moura J. J. G., and Moura I. , J Biol Inorg Chem, Volume 20, p.287-309, (2015)
How Biology handles nitrite, Maia, L., and Moura J. J. G. , Chem Rev, Volume 114, p.5273-5357, (2014)
Lessons from denitrification to the human metabolism of signalling nitric oxide, Maia, L. B., and Moura J. J. G. , Metalloenzymes in Denitrification: Applications and Environmental Impacts, RSC Metallobiology Series No. 9 (ISBN: 978-1-78262-376-2)., p.419-443, (2017)
Nitrite reduction by xanthine oxidase family enzymes: a new class of nitrite reductases, Maia, L. B., and Moura J. J. , J Biol Inorg Chem, Mar, Volume 16, Number 3, p.443-60, (2011) AbstractWebsite

Mammalian xanthine oxidase (XO) and Desulfovibrio gigas aldehyde oxidoreductase (AOR) are members of the XO family of mononuclear molybdoenzymes that catalyse the oxidative hydroxylation of a wide range of aldehydes and heterocyclic compounds. Much less known is the XO ability to catalyse the nitrite reduction to nitric oxide radical (NO). To assess the competence of other XO family enzymes to catalyse the nitrite reduction and to shed some light onto the molecular mechanism of this reaction, we characterised the anaerobic XO- and AOR-catalysed nitrite reduction. The identification of NO as the reaction product was done with a NO-selective electrode and by electron paramagnetic resonance (EPR) spectroscopy. The steady-state kinetic characterisation corroborated the XO-catalysed nitrite reduction and demonstrated, for the first time, that the prokaryotic AOR does catalyse the nitrite reduction to NO, in the presence of any electron donor to the enzyme, substrate (aldehyde) or not (dithionite). Nitrite binding and reduction was shown by EPR spectroscopy to occur on a reduced molybdenum centre. A molecular mechanism of AOR- and XO-catalysed nitrite reduction is discussed, in which the higher oxidation states of molybdenum seem to be involved in oxygen-atom insertion, whereas the lower oxidation states would favour oxygen-atom abstraction. Our results define a new catalytic performance for AOR-the nitrite reduction-and propose a new class of molybdenum-containing nitrite reductases.

Nitrite reduction by molybdoenzymes - A new class of nitric oxide-forming nitrite reductases, Maia, L. B., and Moura J. J. G. , J Biol Inorg Chem, Volume 20, p.403-433, (2015)
NADH oxidase activity of rat and human liver xanthine oxidoreductase: potential role in superoxide production, Maia, L., Duarte R. O., Ponces-Freire A., Moura J. J., and Mira L. , J Biol Inorg Chem, Aug, Volume 12, Number 6, p.777-87, (2007) AbstractWebsite

To characterise the NADH oxidase activity of both xanthine dehydrogenase (XD) and xanthine oxidase (XO) forms of rat liver xanthine oxidoreductase (XOR) and to evaluate the potential role of this mammalian enzyme as an O2*- source, kinetics and electron paramagnetic resonance (EPR) spectroscopic studies were performed. A steady-state kinetics study of XD showed that it catalyses NADH oxidation, leading to the formation of one O2*- molecule and half a H(2)O(2) molecule per NADH molecule, at rates 3 times those observed for XO (29.2 +/- 1.6 and 9.38 +/- 0.31 min(-1), respectively). EPR spectra of NADH-reduced XD and XO were qualitatively similar, but they were quantitatively quite different. While NADH efficiently reduced XD, only a great excess of NADH reduced XO. In agreement with reductive titration data, the XD specificity constant for NADH (8.73 +/- 1.36 microM(-1) min(-1)) was found to be higher than that of the XO specificity constant (1.07 +/- 0.09 microM(-1) min(-1)). It was confirmed that, for the reducing substrate xanthine, rat liver XD is also a better O2*- source than XO. These data show that the dehydrogenase form of liver XOR is, thus, intrinsically more efficient at generating O2*- than the oxidase form, independently of the reducing substrate. Most importantly, for comparative purposes, human liver XO activity towards NADH oxidation was also studied, and the kinetics parameters obtained were found to be very similar to those of the XO form of rat liver XOR, foreseeing potential applications of rat liver XOR as a model of the human liver enzyme.

EPR spectroscopy on mononuclear molybdenum-containing enzymes, Maia, L. B., Moura I., and Moura J. J. G. , Future Directions in Metalloprotein and Metalloenzyme Research, Biological Magnetic Resonance, Vol. 33 (ISBN: 978-3-319-59100-1), Cham, p.55-101, (2017) Abstract

The biological relevance of molybdenum was demonstrated in the early 1950s-1960s, by Bray, Beinert, Lowe, Massey, Palmer, Ehrenberg, Pettersson, Vänngård, Hanson and others, with ground-breaking studies performed, precisely, by electron paramagnetic resonance (EPR) spectroscopy. Those earlier studies, aimed to investigate the mammalian xanthine oxidase and avian sulfite oxidase enzymes, demonstrated the surprising biological reduction of molybdenum to the paramagnetic Mo5+. Since then, EPR spectroscopy, alongside with other spectroscopic methods and X-ray crystallography, has contributed to our present detailed knowledge about the active site structures, catalytic mechanisms and structure/activity relationships of the molybdenum-containing enzymes.
This Chapter will provide a perspective on the contribution that EPR spectroscopy has made to some selected systems. After a brief overview on molybdoenzymes, the Chapter will be focused on the EPR studies of mammalian xanthine oxidase, with a brief account on the prokaryotic aldehyde oxidoreductase, nicotinate dehydrogenase and carbon monoxide dehydrogenase, vertebrate sulfite oxidase, and prokaryotic formate dehydrogenases and nitrate reductases.

Molybdenum and tungsten-containing enzymes: an overview, Maia, L. B., Moura I., and Moura J. J. G. , Molybdenum and Tungsten Enzymes: Biochemistry, RSC Metallobiology Series No. 5 (ISBN: 978-1-78262-089-1). , p.1-80, (2017) mo_w_enzymes-rsc_book_biochemistry-chap_1.pdf
Unusual reduction mechanism of copper in cysteine-rich environment, Maiti, B. K., Maia L., Moro A. J., Lima J. C., Cordas C., Moura I., and Moura J. J. G. , Inorg Chem, Volume 57, p.8078-8088, (2018) Website
Incorporation of molybdenum in rubredoxin: Models for mononuclear molybdenum enzymes, Maiti, B. K., Maia L. B., Silveira C., Todorovic S., Carreira C., Carepo M., Grazina R., Moura I., and Moura J. J. G. , J Biol Inorg Chem, Volume 20, p.821-829, (2015)
Synthesis and characterization of [S2MoS2Cu(n-SPhF)]2−(n=o, m, p) clusters: Potential 19F-NMR structural probes for Orange Protein, Maiti, B. K., Avilés T., Moura I., Pauleta S. R., and Moura J. J. G. , Inorg Chem Commun, Volume 45, p.97-100, (2014)
The small iron-sulfur protein from the ORP operon binds a [2Fe-2S] cluster, Maiti, B. K., Moura I., Moura J. J. G., and Pauleta S. R. , Biochim Biophys Acta, Volume 1857, p.1422-1429, (2016) Website