Publications

Export 197 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
S
Structure and function of ferrochelatase, Ferreira, G. C., Franco R., Lloyd S. G., Moura I., Moura J. J., and Huynh B. H. , J Bioenerg Biomembr, Apr, Volume 27, Number 2, p.221-9, (1995) AbstractWebsite

Ferrochelatase is the terminal enzyme of the heme biosynthetic pathway in all cells. It catalyzes the insertion of ferrous iron into protoporphyrin IX, yielding heme. In eukaryotic cells, ferrochelatase is a mitochondrial inner membrane-associated protein with the active site facing the matrix. Decreased values of ferrochelatase activity in all tissues are a characteristic of patients with protoporphyria. Point-mutations in the ferrochelatase gene have been recently found to be associated with certain cases of erythropoietic protoporphyria. During the past four years, there have been considerable advances in different aspects related to structure and function of ferrochelatase. Genomic and cDNA clones for bacteria, yeast, barley, mouse, and human ferrochelatase have been isolated and sequenced. Functional expression of yeast ferrochelatase in yeast strains deficient in this enzyme, and expression in Escherichia coli and in baculovirus-infected insect cells of different ferrochelatase cDNAs have been accomplished. A recently identified (2Fe-2S) cluster appears to be a structural feature shared among mammalian ferrochelatases. Finally, functional studies of ferrochelatase site-directed mutants, in which key amino acids were replaced with residues identified in some cases of protoporphyria, will be summarized in the context of protein structure.

Structure of the Ni sites in hydrogenases by X-ray absorption spectroscopy. Species variation and the effects of redox poise, Gu, Z. J., Dong J., Allan C. B., Choudhury S. B., Franco R., Moura J. J. G., Legall J., Przybyla A. E., Roseboom W., Albracht S. P. J., Axley M. J., Scott R. A., and Maroney M. J. , Journal of the American Chemical Society, Nov 13, Volume 118, Number 45, p.11155-11165, (1996) AbstractWebsite

Structural information obtained from the analysis of nickel K-edge X-ray absorption spectroscopic data of [NiFe]hydrogenases from Desulfovibrio gigas, Thiocapsa roseopersicina, Desulfovibrio desulfuricans (ATCC 27774), Escherichia coli (hydrogenase-1), Chromatium vinosum, and Alcaligenes eutrophus H16 (NAD(+)-reducing, soluble hydrogenase), poised in different redox states, is reported. The data allow the active-site structures of enzymes from several species to be compared, and allow the effects of redox poise on the structure of the nickel sites to be examined. In addition, the structure of the nickel site obtained from recent crystallographic studies of the D. gigas enzyme (Volbeda, A.; Charon, M.-H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Nature 1995, 373, 580-587) is compared with the structural features obtained from the analysis of XAS data from the same enzyme. The nickel sites of all but the oxidized (as isolated) sample of A. eutrophus hydrogenase are quite similar. The nickel K-edge energies shift 0.9-1.5 eV to lower energy upon reduction from oxidized (forms A and B) to fully reduced forms. This value is comparable with no more than a one-electron metal-centered oxidation state change. With the exception of T. roseopersicina hydrogenase, most of the edge energy shift (-0.8 eV) occurs upon reduction of the oxidized enzymes to the EPR-silent intermediate redox level (SI). Analysis of the XANES features assigned to 1s-->3d electronic transitions indicates that the shift in energy that occurs for reduction of the enzymes to the SI level may be attributed at least in part to an increase in the coordination number from five to six. The smallest edge energy shift is observed for the T. roseopersicina enzyme, where the XANES data indicate that the nickel center is always six-coordinate. With the exception of the oxidized sample of A. eutrophus hydrogenase, the EXAFS data are dominated by scattering from S-donor ligands at similar to 2.2 Angstrom. The enzyme obtained from T. roseopersicina also shows evidence for the presence of O,N-donor ligands. The data from A. eutrophus hydrogenase are unique in that they indicate that a significant structural change occurs upon reduction of the enzyme. EXAFS data obtained from the oxidized (as isolated) A. eutrophus enzyme indicate that the EXAFS is dominated by scattering from 3-4 N,O-donor atoms at 2.06(2) Angstrom, with contributions from 2-3 S-donor ligands at 2.35(2) Angstrom. This changes upon reduction to a more typical nickel site composed of similar to 4 S-donor ligands at a Ni-S distance of 2.19(2) Angstrom. Evidence for the presence of atoms in the 2.4-2.9 Angstrom distance range is found in most samples, particularly the reduced enzymes (SI, form C, and R). The analysis of these data is complicated by the fact that it is difficult to distinguish between S and Fe scattering atoms at this distance, and by the potential presence of both S and another metal atom at similar distances. The results of EXAFS analysis are shown to be in general agreement with the published crystal structure of the D. gigas enzyme.

Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies, Morais, J., Palma P. N., Frazao C., Caldeira J., Legall J., Moura I., Moura J. J., and Carrondo M. A. , Biochemistry, Oct 3, Volume 34, Number 39, p.12830-41, (1995) AbstractWebsite

The three-dimensional X-ray structure of cytochrome c3 from a sulfate reducing bacterium, Desulfovibrio desulfuricans ATCC 27774 (107 residues, 4 heme groups), has been determined by the method of molecular replacement [Frazao et al. (1994) Acta Crystallogr. D50, 233-236] and refined at 1.75 A to an R-factor of 17.8%. When compared with the homologous proteins isolated from Desulfovibrio gigas, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris Miyazaki F, and Desulfomicrobium baculatus, the general outlines of the structure are essentialy kept [heme-heme distances, heme-heme angles, His-His (axial heme ligands) dihedral angles, and the geometry of the conserved aromatic residues]. The three-dimensional structure of D. desulfuricans ATCC 27774 cytochrome c3Dd was modeled on the basis of the crystal structures available and amino acid sequence comparisons within this homologous family of multiheme cytochromes [Palma et al. (1994) Biochemistry 33, 6394-6407]. This model is compared with the refined crystal structure now reported, in order to discuss the validity of structure prediction methods and critically evaluate the steps used to predict protein structures by homology modeling. The four heme midpoint redox potentials were determined by using deconvoluted electron paramagnetic resonance (EPR) redox titrations. Structural criteria (electrostatic potentials, heme ligand orientation, EPR g values, heme exposure, data from protein-protein interaction studies) are invoked to assign the redox potentials corresponding to each specific heme in the three-dimensional structure.

A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes, Huber, R., Hof P., Duarte R. O., Moura J. J., Moura I., Liu M. Y., Legall J., Hille R., Archer M., and Romao M. J. , Proc Natl Acad Sci U S A, Aug 20, Volume 93, Number 17, p.8846-51, (1996) AbstractWebsite

The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.

Subunit composition, crystallization and preliminary crystallographic studies of the Desulfovibrio gigas aldehyde oxidoreductase containing molybdenum and [2Fe-2S] centers, Romao, M. J., Barata B. A., Archer M., Lobeck K., Moura I., Carrondo M. A., Legall J., Lottspeich F., Huber R., and Moura J. J. , Eur J Biochem, Aug 1, Volume 215, Number 3, p.729-32, (1993) AbstractWebsite

The Desulfovibrio gigas aldehyde oxidoreductase contains molybdenum bound to a pterin cofactor and [2Fe-2S] centers. The enzyme was characterized by SDS/PAGE, gel-filtration and analytical ultracentrifugation experiments. It was crystallized at 4 degrees C, pH 7.2, using isopropanol and MgCl2 as precipitants. The crystals diffract beyond 0.3-nm (3.0-A) resolution and belong to space group P6(1)22 or its enantiomorph, with cell dimensions a = b = 14.45 nm and c = 16.32 nm. There is one subunit/asymmetric unit which gives a packing density of 2.5 x 10(-3) nm3/Da (2.5 A3/Da), consistent with the experimental crystal density, rho = 1.14 g/cm3. One dimer (approximately 2 x 100 kDa) is located on a crystallographic twofold axis.

Sulphate reducing bacteria and microbially induced corroision, Dall`Agnol, L., and Moura J. J. G. , Green BOOK - Understanding Biocorrosion: Fundamentals and Applications, p.ISBN :9781782421207, (2014)
Synechocystis ferredoxin/ferredoxin-NADP(+)-reductase/NADP+ complex: Structural model obtained by NMR-restrained docking, Palma, P. N., Lagoutte B., Krippahl L., Moura J. J., and Guerlesquin F. , FEBS Lett, Aug 29, Volume 579, Number 21, p.4585-90, (2005) AbstractWebsite

Ferredoxin (Fd) and ferredoxin-NADP(+)-reductase (FNR) are two terminal physiological partners of the photosynthetic electron transport chain. Based on a nuclear magnetic resonance (NMR)-restrained-docking approach, two alternative structural models of the Fd-FNR complex in the presence of NADP+ are proposed. The protein docking simulations were performed with the software BiGGER. NMR titration revealed a 1:1 stoichiometry for the complex and allowed the mapping of the interacting residues at the surface of Fd. The NMR chemical shifts were encoded into distance constraints and used with theoretically calculated electronic coupling between the redox cofactors to propose experimentally validated docked complexes.

T
Temperature-dependent proton NMR investigation of the electronic structure of the trinuclear iron cluster of the oxidized Desulfovibrio gigas ferredoxin II, Macedo, Anjos L., Moura Isabel, Moura Jose J. G., Legall Jean, and Huynh Boi Hanh , Inorganic Chemistry, 1993/03/01, Volume 32, Number 7, p.1101-1105, (1993) AbstractWebsite
n/a
Thiol/disulfide formation associated with the redox activity of the [Fe3S4] cluster of Desulfovibrio gigas ferredoxin II. 1H NMR and Mossbauer spectroscopic study, Macedo, A. L., Moura I., Surerus K. K., Papaefthymiou V., Liu M. Y., Legall J., Munck E., and Moura J. J. , J Biol Chem, Mar 18, Volume 269, Number 11, p.8052-8, (1994) AbstractWebsite

Desulfovibrio gigas ferredoxin II (FdII) is a small protein (alpha 4 subunit structure as isolated; M(r) approximately 6400 per subunit; 6 cysteine residues) containing one Fe3S4 cluster per alpha-subunit. The x-ray structure of FdII has revealed a disulfide bridge formed by Cys-18 and Cys-42 approximately 13 A away from the center of the cluster; moreover, the x-ray structure indicates that Cys-11 forms a disulfide bridge with a methanethiol. In the oxidized state, FdIIoxm the 1H NMR spectra, exhibit four low-field contact-shifted resonances at 29, 24, 18, and 15.5 ppm whereas the reduced state, FdIIR (S = 2), yields two features at +18.5 and -11 ppm. In the course of studying the redox behavior of FdII, we have discovered a stable intermediate, FdIIint, that yields 1H resonances at 24, 21.5, 21, and 14 ppm. This intermediate appears in the potential range where the cluster (E'0 approximately -130 mV) is reduced from the [Fe3S4]1+ to the [Fe3S4]0 state. FdIIint is observed during reductive titrations with dithionite or hydrogen/hydrogenase or after partial oxidation of FdIIR by 2,6-dichlorophenolindophenol or air. Our studies show that a total of three electrons per alpha-subunit are transferred to FdII. Our experiments demonstrate the absence of a methanethiol-Cys-11 linkage in our preparations, and we propose that two of the three electrons are used for the reduction of the disulfide bridge. Mossbauer (and EPR) studies show that the Fe3S4 cluster of FdIIint is at the same oxidation level as FdIIox, but indicate some changes in the exchange couplings among the three ferric sites. Our data suggest that the differences in the NMR and Mossbauer spectra of FdIIox and FdIIint result from conformational changes attending the breaking or formation of the disulfide bridge. The present study suggests that experiments be undertaken to explore an in vivo redox function for the disulfide bridge.

The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, Fauque, G., Peck, H. D. Jr., Moura J. J., Huynh B. H., Berlier Y., Dervartanian D. V., Teixeira M., Przybyla A. E., Lespinat P. A., Moura I.,, and et al , FEMS Microbiol Rev, Dec, Volume 4, Number 4, p.299-344, (1988) AbstractWebsite

Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)

The three-iron cluster in a ferredoxin from Desulphovibrio gigas. A low-temperature magnetic circular dichroism study, Thomson, A. J., Robinson A. E., Johnson M. K., Moura J. J., Moura I., Xavier A. V., and Legall J. , Biochim Biophys Acta, Aug 28, Volume 670, Number 1, p.93-100, (1981) AbstractWebsite

Ferredoxin II from Desulphovibrio gigas is a tetrameric protein containing a novel iron-sulphur cluster consisting of three iron atoms. The low-temperature magnetic circular dichroism (MCD) spectra of the oxidized and dithionite-reduced forms of ferredoxin II have been measured over the wavelength range approx. 300-800 nm. Both oxidation levels of the cluster are shown to be paramagnetic, although only the oxidized form gives an EPR signal. MCD magnetization curves have been constructed over the temperature range approx. 1.5-150 K and at fields between 0 and 5.1 Tesla. The curve for the oxidized protein can be fitted to a ground state of spin S = 1/2 with an isotropic g factor of 2.01. There is evidence for the thermal population of a low-lying electronic state above 50 K. The reduced protein gives a distinctive set of magnetization curves that are tentatively assigned to a ground state of S = 2, with a predominantly axial zero-field distortion that leaves the doublet Ms = +/-2 lowest in energy. The zero-field components have a maximum energy spread of approx. 15 cm-1. which places an upper limit of 4 cm-1 on the axial zero-field parameter D. The MCD spectra of the oxidized and reduced forms of the cluster are quite distinctive from one another. The spectra of the oxidized state are also different from those of oxidized high-potential iron protein from Chromatium and should provide a useful criterion for distinguishing between four- and three-iron clusters in their highest oxidation levels.

Total synthesis of a simple metalloprotein-desulforedoxin, Tavares, P., Wunderlich J. K., Lloyd S. G., Legall J., Moura J. J., and Moura I. , Biochem Biophys Res Commun, Mar 17, Volume 208, Number 2, p.680-7, (1995) AbstractWebsite

Desulforedoxin is a protein purified from cellular extracts of Desulfovibrio gigas. It is a small (7.9 kDa) dimeric protein that contains a distorted rubredoxin like center (one single iron coordinated by four cysteinyl residues). Due to the simplicity of the polypeptide chain and of the iron center, an attempt was made to chemically produce this protein. A 36 amino acid polypeptide chain was synthesized based on the known sequence of native Desulforedoxin. The iron center was then reconstituted and the biochemical and spectroscopic characteristics of this synthetic protein were investigated. The final product has an equal sequence to the protein purified from D. gigas. The synthetic and natural Dx are very similar, in terms redox potential and spectroscopic properties (UV-Visible, EPR, Mossbauer).

Two-dimensional 1H NMR studies on Desulfovibrio gigas ferredoxins. Assignment of the iron-sulfur cluster cysteinyl ligand protons, Macedo, Anjos L., Palma Nuno P., Moura Isabel, Legall Jean, Wray Victor, and Moura José J. G. , Magnetic Resonance in Chemistry, Volume 31, Number 13, p.S59-S67, (1993) AbstractWebsite

1D and 2D 1H NMR studies are reported on the oxidized and reduced [4Fe-4S] cluster of Desulfovibrio gigas ferredoxin I (Fdl). Several low-field contact shifted resonances (fast relaxing) are assigned to β-CH2 and α-CH coordinated cysteinyl residues. NOESY patterns (supported by 1D NOE experiments) resolves four pairs of geminal β-CH2 protons at low-field. The cluster ligands are assigned non-specifically to Cys8, Cys11, Cys14 and Cys50, based on the X-ray structural analysis available for the oligomeric form, FdII, that contains a single [3Fe-4S] cluster. It was indicated in this case that Cys11 is not bound to the trinuclear cluster but is tilted towards the solvent. The presence of four pairs of geminal β-CH2 protons for FdI unambiguously proves the occupancy of the fourth site of the [3Fe-4S] complex and implies the coordination of the Cys11 at the cluster. Analysis of the oxidized form of FdII, using the same methodology as described for FdI, supports the presence of three cysteinyl ligands in the [3Fe-4S] core. Further, the combined use of the X-ray coordinates enables the specific assignment of the three cysteinyl ligands of the cluster, extending a previous assignment of Cys50. In addition, very broad resonances were detected for the reduced form of FdII in the low-field region around 200 ppm and in the high field region around −80 ppm.

U
Ultrasonic multiprobe as a new tool to overcome the bottleneck of throughput in workflows for protein identification relaying on ultrasonic energy, Santos, H. M., Carreira R., Diniz M. S., Rivas M. G., Lodeiro C., Moura J. J., and Capelo J. L. , Talanta, Apr 15, Volume 81, Number 1-2, p.55-62, (2010) AbstractWebsite

We studied in this work the performance of the new ultrasonic multiprobe in terms of throughput, handling and robustness. The study was conducted using the multiprobe to speed two different proteomics workflows. The "classic" method relaying on overnight protein digestion (12h), was used as the standard procedure. This work clearly shows the importance of testing variables such as ultrasonic amplitude and ultrasonic time when adapting an ultrasonic-based treatment to a new ultrasonic device. The results here presented also shown and confirm the advantage of speed up sample treatment workflows with the aid of ultrasonic energy in combination with a 96-well plate. The methods compared were similar in terms of robustness, but the desalting free method was the fastest, requiring only 2 min/sample for completion. In addition it was also the simplest in terms of handling, since no desalting step was needed. The following standard proteins were successfully identified using the methods studied: bovine serum albumin, alpha-lactalbumin, ovalbumin, carbonic anhydrase, fructose-bisphosphate aldolase A, catalase, chymotrypsinogen A. As case study, the identification of the protein Split-Soret cytochrome c from D. desulfuricans ATCC 27774 was carried out.

Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase, Moura, J. J., Moura I., Huynh B. H., Kruger H. J., Teixeira M., DuVarney R. C., Dervartanian D. V., Xavier A. V., Peck, H. D. Jr., and Legall J. , Biochem Biophys Res Commun, Oct 29, Volume 108, Number 4, p.1388-93, (1982) AbstractWebsite
n/a
Unusual reduction mechanism of copper in cysteine-rich environment, Maiti, B. K., Maia L., Moro A. J., Lima J. C., Cordas C., Moura I., and Moura J. J. G. , Inorg Chem, Volume 57, p.8078-8088, (2018) Website
Using cytochrome c(3) to make selenium nanowires, Abdelouas, A., Gong W. L., Lutze W., Shelnutt J. A., Franco R., and Moura I. , Chemistry of Materials, Jun, Volume 12, Number 6, p.1510-+, (2000) AbstractWebsite

We report on a new method to make nanostructures in aqueous solution at room temperature. We used the protein cytochrome c(3) to catalyze reduction of selenate (SeO42-) to selenium Se-0 by dithionite. Reduction was instantaneous. After a week spherical nanoparticles of red Se-0 (about 50 nm diameter) precipitated, followed by self-assembling into crystalline nanowires, typically 1 mu m long. The nanowires were composed of one strand of spherical particles; thicker strands contained several nanoparticles in parallel.

V
Voltammetric studies of the catalytic electron-transfer process between the Desulfovibrio gigas hydrogenase and small proteins isolated from the same genus, Moreno, C., Franco R., Moura I., Legall J., and Moura J. J. , Eur J Biochem, Nov 1, Volume 217, Number 3, p.981-9, (1993) AbstractWebsite

The kinetics of electron transfer between the Desulfovibrio gigas hydrogenase and several electron-transfer proteins from Desulfovibrio species were investigated by cyclic voltammetry, square-wave voltammetry and chronoamperometry. The cytochrome c3 from Desulfovibrio vulgaris (Hildenborough), Desulfovibrio desulfuricans (Norway 4), Desulfovibrio desulfuricans (American Type Culture Collection 27774) and D. gigas (NCIB 9332) were used as redox carriers. They differ in their redox potentials and isoelectric point. Depending on the pH, all the reduced forms of these cytochromes were effective in electron exchange with hydrogenase. Other small electron-transfer proteins such as ferredoxin I, ferredoxin II and rubredoxin from D. gigas were tentatively used as redox carriers. Only ferredoxin II was effective in mediating electron exchange between hydrogenase and the working electrode. The second-order rate constants k for the reaction between reduced proteins and hydrogenase were calculated based on the theory of the simplest electrocatalytic mechanism [Moreno, C., Costa, C., Moura, I., Le Gall, J., Liu, M. Y., Payne, W. J., van Dijk, C. & Moura, J. J. G. (1993) Eur. J. Biochem. 212, 79-86] and the results obtained by cyclic voltammetry were compared with those obtained by chronoamperometry. Values for k of 10(5)-10(6) M-1 s-1 (cytochrome c3 as electron carrier) and 10(4) M-1 s-1 (ferredoxin II as the electron carrier) were determined. The rate-constant values are discussed in terms of the existence of an electrostatic interaction between the electrode surface and the redox carrier and between the redox carrier and a positively charged part of the enzyme.

X
X-ray absorption spectroscopy of nickel in the hydrogenase from Desulfovibrio gigas, Scott, Robert A., Wallin Sten A., Czechowski Melvin, Dervartanian D. V., Legall Jean, Peck Harry D., and Moura Isabel , Journal of the American Chemical Society, 1984/10/01, Volume 106, Number 22, p.6864-6865, (1984) AbstractWebsite
n/a
[
[16] Adenylylsulfate reductases from sulfate-reducing bacteria, Lampreia, Jorge, Pereira Alice S., and Moura José J. G. , Methods in Enzymology, Volume Volume 243, p.241-260, (1994) Abstract
n/a
[20] Low-spin sulfite reductases, Moura, Isabel, and Lino Ana Rosa , Methods in Enzymology, Volume Volume 243, p.296-303, (1994) Abstract
n/a
[21] Hexaheme nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774), Liu, Ming-Cheh, Costa Cristina, and Moura Isabel , Methods in Enzymology, Volume Volume 243, p.303-319, (1994) Abstract
n/a