Publications

Export 41 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
M
Molybdenum induces the expression of a protein containing a new heterometallic Mo-Fe cluster in Desulfovibrio alaskensis, Rivas, M. G., Carepo M. S., Mota C. S., Korbas M., Durand M. C., Lopes A. T., Brondino C. D., Pereira A. S., George G. N., Dolla A., Moura J. J., and Moura I. , Biochemistry, Feb 10, Volume 48, Number 5, p.873-82, (2009) AbstractWebsite

The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmental conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 microM molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.

Mössbauer and EPR evidence for nickel and 3Fe cluster in the hydrogenases of D. desulfuricans and D. gigas, Huynh, B. H., Legall J., Dervartanian D. V., Peck Jr H. D., Krüger H. J., Moura I., Moura J. J. G., and Xavier A. V. , Inorganica Chimica Acta, Volume 79, p.136, (1983) AbstractWebsite
n/a
N
Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase, Jovanovic, T., Ascenso C., Hazlett K. R., Sikkink R., Krebs C., Litwiller R., Benson L. M., Moura I., Moura J. J., Radolf J. D., Huynh B. H., Naylor S., and Rusnak F. , J Biol Chem, Sep 15, Volume 275, Number 37, p.28439-48, (2000) AbstractWebsite

Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mossbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic bacteria.

O
Oxovanadium(IV) complexes of the dipeptides glycyl-L-aspartic acid, L-aspartylglycine and related ligands; a spectroscopic and potentiometric study, Pessoa, J. C., Gajda T., Gillard R. D., Kiss T., Luz S. M., Moura J. J. G., Tomaz I., Telo J. P., and Torok I. , Journal of the Chemical Society-Dalton Transactions, Nov 7, Number 21, p.3587-3600, (1998) AbstractWebsite

The equilibria in the systems VO2+ + L (L = Gly-L-Asp, L-Asp-Gly, N-acetyl-L-aspartic acid or succinic acid) have been studied at 25 degrees C and 0.2 mol dm(3) K(CI) medium by a combination of potentiometric and spectroscopic methods (ESR, circular dichroism and visible absorption). Formation constants were calculated from pH-metric data with total oxovanadium(Iv) concentrations of(0.6-4) x 10(-3) mol dm(-3) and ligand-to-metal (L:M) ratios of 2-8 (AspGly) or 4-15: 1 (other systems). The position of the Asp residue in the peptide chain affects the co-ordination mode of the ligands: while in the GlyAsp system bis complexes start to form at pH less than 2, for AspGly only 1 : 1 complexes form, with relatively high CD signal. The co-ordination behaviour of N-acetyl-L-aspartic and succinic acids is similar. The results of potentiometric and spectroscopic methods are self consistent. Isomeric structures are discussed for each stoichiometry proposed and the results compared with those for L-aspartic acid and dipeptides with non-coordinating side chains.

P
Predicting Protein-Protein Interactions Using BiGGER: Case Studies, Almeida, R. M., Dell'Acqua S., Krippahl L., Moura J. J. G., and Pauleta S. R. , Molecules, Volume 21, p.1037, (2016) Website
Proton NMR spectra of rubredoxins: new resonances assignable to .alpha.-CH and .beta.-CH2 hydrogens of cysteinate ligands to iron(II), Werth, Mark T., Kurtz Donald M., Moura Isabel, and Legall Jean , Journal of the American Chemical Society, 1987/01/01, Volume 109, Number 1, p.273-275, (1987) AbstractWebsite
n/a
Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands, Fauque, G., Lino A. R., Czechowski M., Kang L., Dervartanian D. V., Moura J. J., Legall J., and Moura I. , Biochim Biophys Acta, Aug 1, Volume 1040, Number 1, p.112-8, (1990) AbstractWebsite

A dissimilatory bisulfite reductase has been purified from a thermophilic sulfate-reducing bacterium Desulfovibrio thermophilus (DSM 1276) and studied by EPR and optical spectroscopic techniques. The visible spectrum of the purified bisulfite reductase exhibits absorption maxima at 578.5, 392.5 and 281 nm with a weak band around 700 nm. Photoreduction of the native enzyme causes a decrease in absorption at 578.5 nm and a concomitant increase in absorption at 607 nm. When reduced, the enzyme reacts with cyanide, sulfite, sulfide and carbon monoxide to give stable complexes. The EPR spectrum of the native D. thermophilus bisulfite reductase shows the presence of a high-spin ferric signal with g values at 7.26, 4.78 and 1.92. Upon photoreduction the high-spin ferric heme signal disappeared and a typical 'g = 1.94' signal of [4Fe-4S] type cluster appeared. Chemical analyses show that the enzyme contains four sirohemes and eight [4Fe-4S] centers per mol of protein. The molecular mass determined by gel filtration was found to be 175 kDa. On SDS-gel electrophoresis the enzyme presents a main band of 44 to 48 kDa. These results suggest that the bisulfite reductase contains probably one siroheme and two [4Fe-4S] centers per monomer. The dissimilatory bisulfite reductase from D. thermophilus presents some homologous properties with desulfofuscidin, the bisulfite reductase isolated from Thermodesulfobacterium commune (Hatchikian, E.C. and Zeikus, J.G. (1983) J. Bacteriol. 153, 1211-1220).

Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774, Gavel, O. Y., Kladova A. V., Bursakov S. A., Dias J. M., Texeira S., Shnyrov V. L., Moura J. J., Moura I., Romao M. J., and Trincao J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Jul 1, Volume 64, Number Pt 7, p.593-5, (2008) AbstractWebsite

Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 A resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes.

R
Redox potential measurements of the Mycobacterium tuberculosis heme protein KatG and the isoniazid-resistant enzyme KatG(S315T): insights into isoniazid activation, Wengenack, N. L., Lopes H., Kennedy M. J., Tavares P., Pereira A. S., Moura I., Moura J. J., and Rusnak F. , Biochemistry, Sep 19, Volume 39, Number 37, p.11508-13, (2000) AbstractWebsite

Mycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe(3+)/Fe(2+) couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and II or oxyferrous KatG.

S
Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans, Tavares, P., Pereira A. S., Krebs C., Ravi N., Moura J. J., Moura I., and Huynh B. H. , Biochemistry, Mar 3, Volume 37, Number 9, p.2830-42, (1998) AbstractWebsite

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2. Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.

The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3, Ma, J. G., Zhang J., Franco R., Jia S. L., Moura I., Moura J. J., Kroneck P. M., and Shelnutt J. A. , Biochemistry, Sep 8, Volume 37, Number 36, p.12431-42, (1998) AbstractWebsite

Resonance Raman (RR) spectroscopy, molecular mechanics (MM) calculations, and normal-coordinate structural decomposition (NSD) have been used to investigate the conformational differences in the hemes in ferricytochromes c3. NSD analyses of heme structures obtained from X-ray crystallography and MM calculations of heme-peptide fragments of the cytochromes c3 indicate that the nonplanarity of the hemes is largely controlled by a fingerprint peptide segment consisting of two heme-linked cysteines, the amino acids between the cysteines, and the proximal histidine ligand. Additional interactions between the heme and the distal histidine ligand and between the heme propionates and the protein also influence the heme conformation, but to a lesser extent than the fingerprint peptide segment. In addition, factors that influence the folding pattern of the fingerprint peptide segment may have an effect on the heme conformation. Large heme structural differences between the baculatum cytochromes c3 and the other proteins are uncovered by the NSD procedure [Jentzen, W., Ma, J.-G., and Shelnutt, J. A. (1998) Biophys. J. 74, 753-763]. These heme differences are mainly associated with the deletion of two residues in the covalently linked segment of hemes 4 for the baculatum proteins. Furthermore, some of these structural differences are reflected in the RR spectra. For example, the frequencies of the structure-sensitive lines (nu4, nu3, and nu2) in the high-frequency region of the RR spectra are lower for the Desulfomicrobium baculatum cytochromes c3 (Norway 4 and 9974) than for the Desulfovibrio (D.) gigas, D. vulgaris, and D. desulfuricans strains, consistent with a more ruffled heme. Spectral decompositions of the nu3 and nu10 lines allow the assignment of the sublines to individual hemes and show that ruffling, not saddling, is the dominant factor influencing the frequencies of the structure-sensitive Raman lines. The distinctive spectra of the baculatum strains investigated are a consequence of hemes 2 and 4 being more ruffled than is typical of the other proteins.

Structure and function of molybdopterin containing enzymes, Romao, M. J., Knablein J., Huber R., and Moura J. J. , Prog Biophys Mol Biol, Volume 68, Number 2-3, p.121-44, (1997) AbstractWebsite

Molybdopterin containing enzymes are present in a wide range of living systems and have been known for several decades. However, only in the past two years have the first crystal structures been reported for this type of enzyme. This has represented a major breakthrough in this field. The enzymes share common structural features, but reveal different polypeptide folding topologies. In this review we give an account of the related spectroscopic information and the crystallographic results, with emphasis on structure-function studies.

The structure of an electron transfer complex containing a cytochrome c and a peroxidase, Pettigrew, G. W., Prazeres S., Costa C., Palma N., Krippahl L., Moura I., and Moura J. J. , J Biol Chem, Apr 16, Volume 274, Number 16, p.11383-9, (1999) AbstractWebsite

Efficient biological electron transfer may require a fluid association of redox partners. Two noncrystallographic methods (a new molecular docking program and 1H NMR spectroscopy) have been used to study the electron transfer complex formed between the cytochrome c peroxidase (CCP) of Paracoccus denitrificans and cytochromes c. For the natural redox partner, cytochrome c550, the results are consistent with a complex in which the heme of a single cytochrome lies above the exposed electron-transferring heme of the peroxidase. In contrast, two molecules of the nonphysiological but kinetically competent horse cytochrome bind between the two hemes of the peroxidase. These dramatically different patterns are consistent with a redox active surface on the peroxidase that may accommodate more than one cytochrome and allow lateral mobility.

The surface-charge asymmetry and dimerisation of cytochrome c550 from Paracoccus denitrificans--implications for the interaction with cytochrome c peroxidase, Pettigrew, G. W., Gilmour R., Goodhew C. F., Hunter D. J., Devreese B., Van Beeumen J., Costa C., Prazeres S., Krippahl L., Palma P. N., Moura I., and Moura J. J. , Eur J Biochem, Dec 1, Volume 258, Number 2, p.559-66, (1998) AbstractWebsite

The implications of the dimeric state of cytochrome c550 for its binding to Paracoccus cytochrome c peroxidase and its delivery of the two electrons required to restore the active enzyme during catalysis have been investigated. The amino acid sequence of cytochrome c550 of Paracoccus denitrificans strain LMD 52.44 was determined and showed 21 differences from that of strain LMD 22.21. Based on the X-ray structure of the latter, a structure for the cytochrome c550 monomer from strain 52.44 is proposed and a dipole moment of 945 debye was calculated with an orientation close to the exposed haem edge. The behaviour of the cytochrome on molecular-exclusion chromatography is indicative of an ionic strength-dependent monomer (15 kDa)/dimer (30 kDa) equilibrium that can also be detected by 1H-NMR spectroscopy. The apparent mass of 50 kDa observed at very low ionic strength was consistent with the presence of a strongly asymmetric dimer. This was confirmed by cross-linking studies, which showed that a cross-linked species of mass 30 kDa on SDS behaved with an apparent mass of 50 kDa on molecular-exclusion chromatography. A programme which carried out and evaluated molecular docking of two monomers to give a dimer generated a most probable dimer in which the monomer dipoles lay almost antiparallel to each other. The resultant dipole moment of the dimer is therefore small. Although this finding calls into question the possibility of preorientation of a strongly asymmetrically charged cytochrome as it collides with a redox partner, the stoichiometry of complex formation with cytochrome c peroxidase as studied by 1H-NMR spectroscopy shows that it is the monomer that binds.

Synechocystis ferredoxin/ferredoxin-NADP(+)-reductase/NADP+ complex: Structural model obtained by NMR-restrained docking, Palma, P. N., Lagoutte B., Krippahl L., Moura J. J., and Guerlesquin F. , FEBS Lett, Aug 29, Volume 579, Number 21, p.4585-90, (2005) AbstractWebsite

Ferredoxin (Fd) and ferredoxin-NADP(+)-reductase (FNR) are two terminal physiological partners of the photosynthetic electron transport chain. Based on a nuclear magnetic resonance (NMR)-restrained-docking approach, two alternative structural models of the Fd-FNR complex in the presence of NADP+ are proposed. The protein docking simulations were performed with the software BiGGER. NMR titration revealed a 1:1 stoichiometry for the complex and allowed the mapping of the interacting residues at the surface of Fd. The NMR chemical shifts were encoded into distance constraints and used with theoretically calculated electronic coupling between the redox cofactors to propose experimentally validated docked complexes.

U
Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase, Moura, J. J., Moura I., Huynh B. H., Kruger H. J., Teixeira M., DuVarney R. C., Dervartanian D. V., Xavier A. V., Peck, H. D. Jr., and Legall J. , Biochem Biophys Res Commun, Oct 29, Volume 108, Number 4, p.1388-93, (1982) AbstractWebsite
n/a