Publications

Export 13 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G [H] I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
H
Evidence for a three-iron center in a ferredoxin from Desulfovibrio gigas. Mossbauer and EPR studies, Huynh, B. H., Moura J. J., Moura I., Kent T. A., Legall J., Xavier A. V., and Munck E. , J Biol Chem, Apr 25, Volume 255, Number 8, p.3242-4, (1980) AbstractWebsite

The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with Mossbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and Mossbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The Mossbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Munck, E. (1980) J. Biol. Chem. 255, 1793-1796).

On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mossbauer and redox-titration studies, Huynh, B. H., Patil D. S., Moura I., Teixeira M., Moura J. J., Dervartanian D. V., Czechowski M. H., Prickril B. C., Peck, H. D. Jr., and Legall J. , J Biol Chem, Jan 15, Volume 262, Number 2, p.795-800, (1987) AbstractWebsite

The [NiFe] hydrogenase isolated from Desulfovibrio gigas was poised at different redox potentials and studied by Mossbauer spectroscopy. The data firmly establish that this hydrogenase contains four prosthetic groups: one nickel center, one [3Fe-xS], and two [4Fe-4S] clusters. In the native enzyme, both the nickel and the [3Fe-xS] cluster are EPR-active. At low temperature (4.2 K), the [3Fe-xS] cluster exhibits a paramagnetic Mossbauer spectrum typical for oxidized [3Fe-xS] clusters. At higher temperatures (greater than 20 K), the paramagnetic spectrum collapses into a quadrupole doublet with parameters magnitude of delta EQ magnitude of = 0.7 +/- 0.06 mm/s and delta = 0.36 +/- 0.06 mm/s, typical of high-spin Fe(III). The observed isomer shift is slightly larger than those observed for the three-iron clusters in D. gigas ferredoxin II (Huynh, B. H., Moura, J. J. G., Moura, I., Kent, T. A., LeGall, J., Xavier, A. V., and Munck, E. (1980) J. Biol. Chem. 255, 3242-3244) and in Azotobacter vinelandii ferredoxin I (Emptage, M. H., Kent, T. A., Huynh, B. H., Rawlings, J., Orme-Johnson, W. H., and Munck, E. (1980) J. Biol. Chem. 255, 1793-1796) and may indicate a different iron coordination environment. When D. gigas hydrogenase is poised at potentials lower than -80 mV (versus normal hydrogen electrode), the [3Fe-xS] cluster is reduced and becomes EPR-silent. The Mossbauer data indicate that the reduced [3Fe-xS] cluster remains intact, i.e. it does not interconvert into a [4Fe-4S] cluster. Also, the electronic properties of the reduced [3Fe-xS] cluster suggest that it is magnetically isolated from the other paramagnetic centers.

Mössbauer and EPR evidence for nickel and 3Fe cluster in the hydrogenases of D. desulfuricans and D. gigas, Huynh, B. H., Legall J., Dervartanian D. V., Peck Jr H. D., Krüger H. J., Moura I., Moura J. J. G., and Xavier A. V. , Inorganica Chimica Acta, Volume 79, p.136, (1983) AbstractWebsite
n/a
Reductive activation of aerobically purified Desulfovibrio vulgaris hydrogenase: Mossbauer characterization of the catalytic H cluster, Huynh, B. H., Tavares P., Pereira A. S., Moura I., and Moura J. J. G. , Biochemistry and Physiology of Anaerobic Bacteria, 2003, p.35-45, (2003) AbstractWebsite
n/a
Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria, Huynh, B. H., Moura I., Lino A. R., Moura J. J. G., and Legall J. , Hyperfine Interactions, 1988, Volume 42, Number 1-4, p.905-908, (1988) AbstractWebsite
n/a
Mossbauer and EPR studies on nitrite reductase from Thiobacillus denitrificans, Huynh, B. H., Lui M. C., Moura J. J., Moura I., Ljungdahl P. O., Munck E., Payne W. J., Peck, H. D. Jr., Dervartanian D. V., and Legall J. , J Biol Chem, Aug 25, Volume 257, Number 16, p.9576-81, (1982) AbstractWebsite
n/a
Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria, Huynh, B., Moura I., Lino A., Moura J., and Legall J. , Hyperfine Interactions, Volume 42, Number 1, p.905-908, (1988) AbstractWebsite

Mössbauer, EPR, and biochemical techniques were used to characterize two dissimilatory sulfite reductases: desulforubidin from Desulfovibrio baculatus strain DSM 1743 and desulfoviridin from Desulfovibrio gigas . For each molecule of desulforubidin, there are two sirohemes and four [4Fe−4S] clusters. The [4Fe−4S] clusters are in the diamagnetic 2+ oxidation state. The sirohemes are high-spin ferric (S=5/2) and each siroheme is exchanged-coupled to a [4Fe−4S] 2+ cluster. Such an exchange-coupled siroheme-[4Fe−4S] unit has also been found in the assimilatory sulfite reductase from Escherichia coli /1/ and in a low-molecular weight sulfite reductase from Desulfovibrio vulgaris /2/. For each molecule of defulfoviridin, there are two tetrahydroporphyrin groups and four [4Fe−4S] 2+ clusters. To our surprise, we discovered that about 80% of the tetrahydroporphyrin groups, however, do not bind iron.

Fe-57 Q-band pulsed ENDOR of the hetero-dinuclear site of nickel hydrogenase: Comparison of the NiA, NiB, and NiC states, Huyett, J. E., Carepo M., Pamplona A., Franco R., Moura I., Moura J. J. G., and Hoffman B. M. , Journal of the American Chemical Society, Oct 1, Volume 119, Number 39, p.9291-9292, (1997) AbstractWebsite
n/a
A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes, Huber, R., Hof P., Duarte R. O., Moura J. J., Moura I., Liu M. Y., Legall J., Hille R., Archer M., and Romao M. J. , Proc Natl Acad Sci U S A, Aug 20, Volume 93, Number 17, p.8846-51, (1996) AbstractWebsite

The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.

Resonance Raman studies of nickel tetrathiolates and nickel-substituted rubredoxins and desulforedoxin, Huang, Yun Hua, Moura Isabel, Moura Jose J. G., Legall Jean, Park Jae Bum, Adams Michael W. W., and Johnson Michael K. , Inorganic Chemistry, 1993/02/01, Volume 32, Number 4, p.406-412, (1993) AbstractWebsite
n/a
EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel, He, S. H., Teixeira M., Legall J., Patil D. S., Moura I., Moura J. J., Dervartanian D. V., Huynh B. H., and Peck, H. D. Jr. , J Biol Chem, Feb 15, Volume 264, Number 5, p.2678-82, (1989) AbstractWebsite

The periplasmic hydrogenase containing equivalent amounts of nickel and selenium plus non-heme iron [NiFeSe) hydrogenase) has been purified from cells of the sulfate reducing bacterium Desulfovibrio baculatus (DSM 1748) grown on a lactate/sulfate medium containing natural Se isotopes and the nuclear isotope, 77Se. Both the 77Se-enriched and unenriched hydrogenases were shown to be free of other hydrogenases and characterized with regard to their Se contents. EPR studies of the reduced nickel signal generated by redox titrations of the enriched and unenriched (NiFeSe) hydrogenases demonstrated that the gx = 2.23 and gy = 2.17 resonances are appreciably broadened by the spin of the 77Se nucleus (I = 1/2). This observation demonstrates unambiguously that the unpaired electron is shared by the Ni and Se atoms and that Se serves as a ligand to the nickel redox center of the (NiFeSe) hydrogenase.

Amino acid sequence of a 3Fe:3S ferredoxin from the "archaebacterium" Methanosarcina barkeri (DSM 800), Hausinger, R. P., Moura I., Moura J. J., Xavier A. V., Santos M. H., Legall J., and Howard J. B. , J Biol Chem, Dec 10, Volume 257, Number 23, p.14192-7, (1982) AbstractWebsite

The complete amino acid sequence for a 3Fe:3S ferredoxin from the "archaebacterium" Methanosarcina barkeri (DSM 800) was determined by repetitive Edman degradation on the whole protein and peptides derived from trypsin, thermolysin, and Staphylococcus aureus protease digestion. The protein has 59 residues of which 8 are cysteines. The latter have the same spacing and distribution as found for the clostridial-type 2 x 4Fe:4S ferredoxins. Also, the sequence had evidence of internal homology which is indicative of gene duplication prior to the divergence of the archaebacteria and the eubacteria. This is the first sequence to be reported for a methanogen ferredoxin and only the fourth for a 3Fe:3S ferredoxin from any source.