Publications

Export 82 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Aldehyde oxidoreductase activity in Desulfovibrio alaskensis NCIMB 13491 EPR assignment of the proximal [2Fe-2S] cluster to the Mo site, Andrade, S. L., Brondino C. D., Feio M. J., Moura I., and Moura J. J. , Eur J Biochem, Apr, Volume 267, Number 7, p.2054-61, (2000) AbstractWebsite

A novel molybdenum iron-sulfur-containing aldehyde oxidoreductase (AOR) belonging to the xanthine oxidase family was isolated and characterized from the sulfate-reducing bacterium Desulfovibrio alaskensis NCIMB 13491, a strain isolated from a soured oil reservoir in Purdu Bay, Alaska. D. alaskensis AOR is closely related to other AORs isolated from the Desulfovibrio genus. The protein is a 97-kDa homodimer, with 0.6 +/- 0.1 Mo, 3.6 +/- 0.1 Fe and 0.9 +/- 0.1 pterin cytosine dinucleotides per monomer. The enzyme catalyses the oxidation of aldehydes to their carboxylic acid form, following simple Michaelis-Menten kinetics, with the following parameters (for benzaldehyde): K(app/m)= 6.65 microM; V app = 13.12 microM.min(-1); k(app/cat) = 0.96 s(-1). Three different EPR signals were recorded upon long reduction of the protein with excess dithionite: an almost axial signal split by hyperfine interaction with one proton associated with Mo(V) species and two rhombic signals with EPR parameters and relaxation behavior typical of [2Fe-2S] clusters termed Fe/S I and Fe/S II, respectively. EPR results reveal the existence of magnetic interactions between Mo(V) and one of the Fe/S clusters, as well as between the two Fe/S clusters. Redox titration monitored by EPR yielded midpoint redox potentials of -275 and -325 mV for the Fe/S I and Fe/S II, respectively. The redox potential gap between the two clusters is large enough to obtain differentiated populations of these paramagnetic centers. This fact, together with the observed interactions among paramagnetic centers, was used to assign the EPR-distinguishable Fe/S I and Fe/S II to those seen in the reported crystal structures of homologous enzymes.

The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by sigma(54) and a Cognate Transcriptional Regulator, Fievet, Anouchka, My Laetitia, Cascales Eric, Ansaldi Mireille, Pauleta Sofia R., Moura Isabel, Dermoun Zorah, Bernard Christophe S., Dolla Alain, and Aubert Corinne , Journal of Bacteriology, Jul, Volume 193, Number 13, p.3207-3219, (2011) AbstractWebsite

Analysis of sequenced bacterial genomes revealed that the genomes encode more than 30% hypothetical and conserved hypothetical proteins of unknown function. Among proteins of unknown function that are conserved in anaerobes, some might be determinants of the anaerobic way of life. This study focuses on two divergent clusters specifically found in anaerobic microorganisms and mainly composed of genes encoding conserved hypothetical proteins. We show that the two gene clusters DVU2103-DVU2104-DVU2105 (orp2) and DVU2107-DVU2108-DVU2109 (orp1) form two divergent operons transcribed by the sigma(54)-RNA polymerase. We further demonstrate that the sigma(54)-dependent transcriptional regulator DVU2106, located between orp1 and orp2, collaborates with sigma(54)-RNA polymerase to orchestrate the simultaneous expression of the divergent orp operons. DVU2106, whose structural gene is transcribed by the sigma(70)-RNA polymerase, negatively retrocontrols its own expression. By using an endogenous pulldown strategy, we identify a physiological complex composed of DVU2103, DVU2104, DVU2105, DVU2108, and DVU2109. Interestingly, inactivation of DVU2106, which is required for orp operon transcription, induces morphological defects that are likely linked to the absence of the ORP complex. A putative role of the ORP proteins in positioning the septum during cell division is discussed.

B
Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios, Lu, Y., Sousa A., Franco R., Mangravita A., Ferreira G. C., Moura I., and Shelnutt J. A. , Biochemistry, Jul 2, Volume 41, Number 26, p.8253-8262, (2002) AbstractWebsite

Resonance Raman (RR) spectroscopy is used to examine porphyrin substrate, product, and inhibitor interactions with the active site of murine ferrochelatase (EC 4.99.1.1), the terminal enzyme in the biosynthesis of heme. The enzyme catalyzes in vivo Fe2+ chelation into protoporphyrin IX to give heme. The RR spectra of native ferrochelatase show that the protein, as isolated, contains varying amounts of endogenously bound high- or low-spin ferric heme, always at much less than 1 equiv. RR data on the binding of free-base protoporphyrin IX and its metalated complexes (Fe(III), Fe(II), and Ni(II)) to active wild-type protein were obtained at varying ratios of porphyrin to protein. The binding of ferric heme, a known inhibitor of the enzyme, leads to the formation of a low-spin six-coordinate adduct. Ferrous heme, the enzyme's natural product, binds in the ferrous high-spin five-coordinate state. Ni(II) protoporphyrin, a metalloporphyrin that has a low tendency toward axial ligation, becomes distorted when bound to ferrochelatase. Similarly for free-base protoporphyrin, the natural substrate of ferrochelatase, the RR spectra of porphyrin-protein complexes reveal a saddling distortion of the porphyrin. These results corroborate and extend our previous findings that porphyrin distortion, a crucial step of the catalytic mechanism, occurs even in the absence of bound metal substrate. Moreover, RR data reveal the presence of an amino acid residue in the active site of ferrochelatase which is capable of specific axial ligation to metals.

Biochemical and spectroscopic characterization of an aldehyde oxidoreductase isolated from Desulfovibrio aminophilus, Thapper, A., Rivas M. G., Brondino C. D., Ollivier B., Fauque G., Moura I., and Moura J. J. , J Inorg Biochem, Jan, Volume 100, Number 1, p.44-50, (2006) AbstractWebsite

Aldehyde oxidoreductase (AOR) activity has been found in a number of sulfate-reducing bacteria. The enzyme that is responsible for the conversion of aldehydes to carboxylic acids is a mononuclear molybdenum enzyme belonging to the xanthine oxidase family. We report here the purification and characterization of AOR isolated from the sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254, an aminolytic strain performing thiosulfate dismutation. The enzyme is a homodimer (ca. 200 kDa), containing a molybdenum centre and two [2Fe-2S] clusters per monomer. UV/Visible and electron paramagnetic resonance (EPR) spectra of D. aminophilus AOR recorded in as-prepared and reduced states are similar to those obtained in AORs from Desulfovibrio gigas, Desulfovibrio desulfuricans and Desulfovibrio alaskensis. Despite AOR from D. aminophilus is closely related to other AORs, it presents lower activity towards aldehydes and no activity towards N-heterocyclic compounds, which suggests another possible role for this enzyme in vivo. A comparison of the molecular and EPR properties of AORs from different Desulfovibrio species is also included.

Biochemical and spectroscopic characterization of the membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Correia, C., Besson S., Brondino C. D., Gonzalez P. J., Fauque G., Lampreia J., Moura I., and Moura J. J. , J Biol Inorg Chem, Nov, Volume 13, Number 8, p.1321-33, (2008) AbstractWebsite

Membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (Iota) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at Em=+197 mV (heme c) and -4.5 mV (heme b). Variable-temperature (4-120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a [3Fe-4S]+ cluster and overlapping signals associated with at least three types of [4Fe-4S]+ centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called "low-pH" and "high-pH," changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases.

Bioelectricity generation using long-term operated biocathode: RFLP based microbial diversity analysis, Ramanaiaha, S. V., Cordas C. M., Matias S. C., Reddyd M. V., Leitão J. H., and Fonseca L. P. , Biotechnology Reports, Volume 32, p.e00693, (2021)
C
Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase, Conrath, K., Pereira A. S., Martins C. E., Timoteo C. G., Tavares P., Spinelli S., Kinne J., Flaudrops C., Cambillau C., Muyldermans S., Moura I., Moura J. J., Tegoni M., and Desmyter A. , Protein Sci, Mar, Volume 18, Number 3, p.619-28, (2009) AbstractWebsite

Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.

Characterization of a 7Fe ferredoxin isolated from the marine denitrifier Pseudomonas nautica strain 617: spectroscopic and electrochemical studies, Macedo, A. L., Besson S., Moreno C., Fauque G., Moura J. J., and Moura I. , Biochem Biophys Res Commun, Dec 13, Volume 229, Number 2, p.524-30, (1996) AbstractWebsite

A 7Fe ferredoxin, isolated from the marine denitrifier Pseudomonas nautica strain 617, was characterized. The NH2-terminal sequence analysis, performed until residue number 56, shows a high similarity with the 7Fe ferredoxins isolated from Azotobacter vinelandii, Pseudomonas putida, and Pseudomonas stutzeri. EPR and NMR spectroscopies identify the presence of both [3Fe-4S] and [4Fe-4S] clusters, with cysteinyl coordination. The electrochemical studies on [Fe-S] clusters show that a fast diffusion-dominated electron transfer, promoted by Mg(II), takes place between the ferredoxin and the glassy carbon electrode. Square wave voltammetry studies gave access to the electrosynthesis of a 4Fe center formed within the [3Fe-4S] core. The [3Fe-4S] cluster exhibited two reduction potentials at -175 and -680 +/- 10 mV and the [4Fe-4S] cluster was characterized by an unusually low reduction potential of -715 +/- 10 mV, at pH 7.6

Characterization of D. desulfuricans (ATCC 27774) [NiFe] hydrogenase EPR and redox properties of the native and the dihydrogen reacted states, Franco, R., Moura I., Legall J., Peck, H. D. Jr., Huynh B. H., and Moura J. J. , Biochim Biophys Acta, Oct 4, Volume 1144, Number 3, p.302-8, (1993) AbstractWebsite

Redox intermediates of D. desulfuricans ATCC 27774 [NiFe] hydrogenase were generated under dihydrogen. Detailed redox titrations, coupled to EPR measurements, give access to the mid-point redox potentials of the iron-sulfur centers and of the Nickel-B signal that represents the ready form of the enzyme. The interaction between the dihydrogen molecule and the nickel centre was probed by the observation of an isotopic effect on the EPR signals detected in turnover conditions, by comparison of the H2O/H2 and D2O/D2-reacted samples.

Characterization Of Electron-Transfer Proteins From The Nitrogen-Fixing Sulfate-Reducing Bacterium Desulfovibrio-Desulfuricans Berre-Eau, Fauque, G., Moura I., Xavier A. V., Galliano N., Moura J. J. G., and Legall J. , Biochemical Society Transactions, Dec, Volume 15, Number 6, p.1049-1050, (1987) AbstractWebsite
n/a
Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel, Pereira, A. S., Franco R., Feio M. J., Pinto C., Lampreia J., Reis M. A., Calvete J., Moura I., Beech I., Lino A. R., and Moura J. J. , Biochem Biophys Res Commun, Apr 16, Volume 221, Number 2, p.414-21, (1996) AbstractWebsite

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed.

Characterization of the cytochrome system of a nitrogen-fixing strain of a sulfate-reducing bacterium: Desulfovibrio desulfuricans strain Berre-Eau, Moura, I., Fauque G., Legall J., Xavier A. V., and Moura J. J. , Eur J Biochem, Feb 2, Volume 162, Number 3, p.547-54, (1987) AbstractWebsite

Two c-type cytochromes were purified and characterized by electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopic techniques, from the sulfate-reducer nitrogen-fixing organism, Desulfovibrio desulfuricans strain Berre-Eau (NCIB 8387). The purification procedures included several chromatographic steps on alumina, carboxymethylcellulose and gel filtration. A tetrahaem and a monohaem cytochrome were identified. The multihaem cytochrome has visible, EPR and NMR spectra with general properties similar to other low-potential bis-histidinyl axially bound haem proteins, belonging to the class of tetrahaem cytochrome c3 isolated from other Desulfovibrio species. The monohaem cytochrome c553 is ascorbate-reducible and its EPR and NMR data are characteristic of a cytochrome with methionine-histidine ligation. Their properties are compared with other homologous proteins isolated from sulfate-reducing bacteria.

Characterization of the Dihemic Cytochrome C549 from the Marine Denitrifying Bacterium Pseudomonas nautica 617, Saraiva, L. M., Besson S., Fauque G., and Moura I. , Biochemical and Biophysical Research Communications, Volume 199, Number 3, p.1289-1296, (1994) AbstractWebsite
n/a
Characterization of the iron-binding site in mammalian ferrochelatase by kinetic and Mossbauer methods, Franco, R., Moura J. J., Moura I., Lloyd S. G., Huynh B. H., Forbes W. S., and Ferreira G. C. , J Biol Chem, Nov 3, Volume 270, Number 44, p.26352-7, (1995) AbstractWebsite

All organisms utilize ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) to catalyze the terminal step of the heme biosynthetic pathway, which involves the insertion of ferrous ion into protoporphyrin IX. Kinetic methods and Mossbauer spectroscopy have been used in an effort to characterize the ferrous ion-binding active site of recombinant murine ferrochelatase. The kinetic studies indicate that dithiothreitol, a reducing agent commonly used in ferrochelatase activity assays, interferes with the enzymatic production of heme. Ferrochelatase specific activity values determined under strictly anaerobic conditions are much greater than those obtained for the same enzyme under aerobic conditions and in the presence of dithiothreitol. Mossbauer spectroscopy conclusively demonstrates that, under the commonly used assay conditions, dithiothreitol chelates ferrous ion and hence competes with the enzyme for binding the ferrous substrate. Mossbauer spectroscopy of ferrous ion incubated with ferrochelatase in the absence of dithiothreitol shows a somewhat broad quadrupole doublet. Spectral analysis indicates that when 0.1 mM Fe(II) is added to 1.75 mM ferrochelatase, the overwhelming majority of the added ferrous ion is bound to the protein. The spectroscopic parameters for this bound species are delta = 1.36 +/- 0.03 mm/s and delta EQ = 3.04 +/- 0.06 mm/s, distinct from the larger delta EQ of a control sample of Fe(II) in buffer only. The parameters for the bound species are consistent with an active site composed of nitrogenous/oxygenous ligands and inconsistent with the presence of sulfur ligands. This finding is in accord with the absence of conserved cysteines among the known ferrochelatase sequences. The implications these results have with regard to the mechanism of ferrochelatase activity are discussed.

Characterization of two dissimilatory sulfite reductases (desulforubidin and desulfoviridin) from the sulfate-reducing bacteria. Moessbauer and EPR studies, Moura, I., Legall J., Lino A. R., Peck H. D., Fauque G., Xavier A. V., Dervartanian D. V., Moura J. J. G., and Huynh B. H. , Journal of the American Chemical Society, 1988/02/17, Volume 110, Number 4, p.1075-1082, (1988) AbstractWebsite
n/a
Comparative electrochemical behavior of cytochrome c on aqueous solutions containing choline-based room temperature ionic liquids, Matias, S. C., Lourenço N. M. T., Fonseca J. P., and Cordas C. M. , ChemistrySelect, Volume 2, p.8701–8705, (2017) Website
The complete catalytic mechanism of Xanthine Oxidase: a computational study, Fernandes, H., Maia L., Ribeiro P. M., J.J.G. Moura, and Cerqueira N. M. , Inorg Chem Front, Volume 8, p.405, (2021)
Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c, Samhan-Arias, A. K., Fortalezas S., Cordas C., Moura I., Moura J. J. G., and Gutierrez-Merino C. , Redox Biol, Volume 15, p.109-114, (2018)
A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization, Alves, T., Besson S., Duarte L. C., Pettigrew G. W., Girio F. M. F., Devreese B., Vandenberghe I., Van Beeumen J., Fauque G., and Moura I. , Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, Oct 12, Volume 1434, Number 2, p.248-259, (1999) AbstractWebsite

Cytochrome c peroxidase was expressed in cells of Pseudomonas nautica strain 617 grown under microaerophilic conditions. The 36.5 kDa dihaemic enzyme was purified to electrophoretic homogeneity in three chromatographic steps. N-terminal sequence comparison showed that the Ps. nautica enzyme exhibits a high similarity with the corresponding proteins from Paracoccus denitrificans and Pseudomonas aeruginosa. UV-visible spectra confirm calcium activation of the enzyme through spin state transition of the peroxidatic haem. Monohaemic cytochrome c(552) from Ps. nautica was identified as the physiological electron donor, with a half-saturating concentration of 122 mu M and allowing a maximal catalytic centre activity of 116 000 min(-1). Using this cytochrome the enzyme retained the same activity even at high ionic strength. There are indications that the interactions between the two redox partners are mainly hydrophobic in nature. (C) 1999 Elsevier Science B.V. All rights reserved.

A cytochrome cd1-type nitrite reductase isolated from the marine denitrifier Pseudomonas nautica 617: purification and characterization, Besson, S., Carneiro C., Moura J. J., Moura I., and Fauque G. , Anaerobe, Aug, Volume 1, Number 4, p.219-26, (1995) AbstractWebsite

Nitrite reductase (cytochrome cd1) was purified to electrophoretic homogeneity from the soluble extract of the marine denitrifying bacterium Pseudomonas nautica strain 617. Cells were anaerobically grown with 10 mM nitrate as final electron acceptor. The soluble fraction was purified by four successive chromatographic steps and the purest cytochrome cd1 exhibited an A280 nm(oxidized)/A410nm(oxidized) coefficient of 0.90. In the course of purification, cytochrome cd1 specific activity presented a maximum value of 0.048 units/mg of protein. This periplasmic enzyme is a homodimer and each 60 kDa subunit contains one heme c and one heme d1 as prosthetic moieties, both in a low spin state. Redox potentials of hemes c and d1 were determined at three different pH values (6.6, 7.6 and 8.6) and did not show any pH dependence. The first 20 amino acids of the NH2-terminal region of the protein were identified and the sequence showed 45% identity with the corresponding region of Pseudomonas aeruginosa nitrite reductase but no homology to Pseudomonas stutzeri and Paracoccus denitrificans enzymes. Spectroscopic properties of Pseudomonas nautica 617 cytochrome cd1 in the ultraviolet-visible range and in electron paramagnetic resonance are described. The formation of a heme d1 -nitric-oxide complex as an intermediate of nitrite reduction was demonstrated by electron paramagnetic resonance experiments.

E
Electrode Kinetics of Ion Jelly and Ion Sol-Gel Redox Materials on Screen-Printed Electrodes, Carvalho, R. N. H., Cordas C. M., and Fonseca L. P. , Appl Sci, Volume 12, p.2087, (2022)
Enzymatic spectrophotometric determination of nitrites in beer, Girotti, S., Ferri E. N., Fini F., Ruffini F., Budini R., Moura I., Almeida G., Costa C., Moura J. J. G., and Carrea G. , Analytical Letters, 1999, Volume 32, Number 11, p.2217-2227, (1999) AbstractWebsite

A colorimetric assay for nitrite determination in beer based on c-type multiheme enzyme Nitrite reductase (NiR) isolated from Desulfovibrio desulfuricans ATCC 27774, was developed. Using the enzyme in solution, nitrite assay was linear in the 10(-8) - 10(-2) M range with a detection limit of 10(-8) M. and a recovery ranging from 90 to 107%. The imprecision ranged from 4 to 10% on the entire calibration curve. With NIR immobilised onto a nylon coil, a flow reactor was developed which showed a narrower linear range (10(-5) - 10(-2) M) and a higher detection limit (10(-5) M) than with the enzyme in solution, but made it possible to reuse the enzyme up to 100 times (50% residual activity). Sample preparation was simple and fast: only degassing and beer dilution by buffer was needed. This enzymatic assay was in good agreement with the results obtained using commercial nitrite determination kits.

EPR and Mossbauer spectroscopic studies on enoate reductase, Caldeira, J., Feicht R., White H., Teixeira M., Moura J. J., Simon H., and Moura I. , J Biol Chem, Aug 2, Volume 271, Number 31, p.18743-8, (1996) AbstractWebsite

Enoate reductase (EC 1.3.1.31) is a protein isolated from Clostridium tyrobutyricum that contains iron, labile sulfide, FAD, and FMN. The enzyme reduces the alpha,beta carbon-carbon double bond of nonactivated 2-enoates and in a reversible way that of 2-enals at the expense of NADH or reduced methyl viologen. UV-visible and EPR potentiometric titrations detect a semiquinone species in redox intermediate states characterized by an isotropic EPR signal at g = 2.0 without contribution at 580 nm. EPR redox titration shows two widely spread mid-point redox potentials (-190 and -350 mV at pH 7. 0), and a nearly stoichiometric amount of this species is detected. The data suggest the semiquinone radical has an anionic nature. In the reduced form, the [Fe-S] moiety is characterized by a single rhombic EPR spectrum, observed in a wide range of temperatures (4. 2-60 K) with g values at 2.013, 1.943, and 1.860 (-180 mV at pH 7.0). The gmax value is low when compared with what has been reported for other iron-sulfur clusters. Mossbauer studies reveal the presence of a [4Fe-4S]+2/+1 center. One of the subcomponents of the spectrum shows an unusually large value of quadrupole splitting (ferrous character) in both the oxidized and reduced states. Substrate binding to the reduced enzyme induces subtle changes in the spectroscopic Mossbauer parameters. The Mossbauer data together with known kinetic information suggest the involvement of this iron-sulfur center in the enzyme mechanism.

ESR studies of cytochrome c3 from Desulfovibrio desulfuricans strain Norway 4: Midpoint potentials of the four haems, and interactions with ferredoxin and colloidal sulphur, Cammack, R., Fauque G., Moura J. J. G., and Legall J. , Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, Volume 784, Number 1, p.68-74, (1984) AbstractWebsite
n/a
F
Fe-57 Q-band pulsed ENDOR of the hetero-dinuclear site of nickel hydrogenase: Comparison of the NiA, NiB, and NiC states, Huyett, J. E., Carepo M., Pamplona A., Franco R., Moura I., Moura J. J. G., and Hoffman B. M. , Journal of the American Chemical Society, Oct 1, Volume 119, Number 39, p.9291-9292, (1997) AbstractWebsite
n/a