Publications

Export 82 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
S
Sulphate reducing bacteria and microbially induced corroision, Dall`Agnol, L., and Moura J. J. G. , Green BOOK - Understanding Biocorrosion: Fundamentals and Applications, p.ISBN :9781782421207, (2014)
Superoxide Reductases, Pereira, Alice S., Tavares Pedro, Folgosa Filipe, Almeida Rui M., Moura Isabel, and Moura José J. G. , European Journal of Inorganic Chemistry, Volume 2007, Number 18, p.2569-2581, (2007) AbstractWebsite
n/a
Synthesis of WO3 nanoparticles for biosensing applications, Santos, L., Silveira C. M., Elangovan E., Neto J. P., Nunes D., Pereira L., Martins R., Viegas J., Moura J. J. G., Todorovic S., Almeida M. G., and Fortunato E. M. , Sensors and Actuators B: Chemical, Volume 223, p.186-194, (2016)
T
The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, Fauque, G., Peck, H. D. Jr., Moura J. J., Huynh B. H., Berlier Y., Dervartanian D. V., Teixeira M., Przybyla A. E., Lespinat P. A., Moura I.,, and et al , FEMS Microbiol Rev, Dec, Volume 4, Number 4, p.299-344, (1988) AbstractWebsite

Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)

U
Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to different electron acceptors - biosynthetic costs modulate substrate selection, Sousa, J. R., Silveira C. M., Fontes P., Roma-Rodrigues C., Fernandes A. R., Van Driessche G., Devreese B., Moura I., Moura J. J. G., and Almeida M. G. , Biochim Biophys Acta, Volume 1865, p.1455-1469, (2017)
Using cytochrome c(3) to make selenium nanowires, Abdelouas, A., Gong W. L., Lutze W., Shelnutt J. A., Franco R., and Moura I. , Chemistry of Materials, Jun, Volume 12, Number 6, p.1510-+, (2000) AbstractWebsite

We report on a new method to make nanostructures in aqueous solution at room temperature. We used the protein cytochrome c(3) to catalyze reduction of selenate (SeO42-) to selenium Se-0 by dithionite. Reduction was instantaneous. After a week spherical nanoparticles of red Se-0 (about 50 nm diameter) precipitated, followed by self-assembling into crystalline nanowires, typically 1 mu m long. The nanowires were composed of one strand of spherical particles; thicker strands contained several nanoparticles in parallel.

V
Voltammetric studies of the catalytic electron-transfer process between the Desulfovibrio gigas hydrogenase and small proteins isolated from the same genus, Moreno, C., Franco R., Moura I., Legall J., and Moura J. J. , Eur J Biochem, Nov 1, Volume 217, Number 3, p.981-9, (1993) AbstractWebsite

The kinetics of electron transfer between the Desulfovibrio gigas hydrogenase and several electron-transfer proteins from Desulfovibrio species were investigated by cyclic voltammetry, square-wave voltammetry and chronoamperometry. The cytochrome c3 from Desulfovibrio vulgaris (Hildenborough), Desulfovibrio desulfuricans (Norway 4), Desulfovibrio desulfuricans (American Type Culture Collection 27774) and D. gigas (NCIB 9332) were used as redox carriers. They differ in their redox potentials and isoelectric point. Depending on the pH, all the reduced forms of these cytochromes were effective in electron exchange with hydrogenase. Other small electron-transfer proteins such as ferredoxin I, ferredoxin II and rubredoxin from D. gigas were tentatively used as redox carriers. Only ferredoxin II was effective in mediating electron exchange between hydrogenase and the working electrode. The second-order rate constants k for the reaction between reduced proteins and hydrogenase were calculated based on the theory of the simplest electrocatalytic mechanism [Moreno, C., Costa, C., Moura, I., Le Gall, J., Liu, M. Y., Payne, W. J., van Dijk, C. & Moura, J. J. G. (1993) Eur. J. Biochem. 212, 79-86] and the results obtained by cyclic voltammetry were compared with those obtained by chronoamperometry. Values for k of 10(5)-10(6) M-1 s-1 (cytochrome c3 as electron carrier) and 10(4) M-1 s-1 (ferredoxin II as the electron carrier) were determined. The rate-constant values are discussed in terms of the existence of an electrostatic interaction between the electrode surface and the redox carrier and between the redox carrier and a positively charged part of the enzyme.