Publications

Export 133 results:
Sort by: Author Title Type [ Year  (Desc)]
1983
Desulfovibrio Gigas hydrogenase: redox properties of the nickel and iron-sulfur centers, Teixeira, M., Moura I., Xavier A. V., Dervartanian D. V., Legall J., Peck, H. D. Jr., Huynh B. H., and Moura J. J. , Eur J Biochem, Feb 15, Volume 130, Number 3, p.481-4, (1983) AbstractWebsite

Below 30 K, oxidized Desulfovibrio gigas hydrogenase presents an intense electron paramagnetic resonance (EPR) signal centered at g = 2.02, typical of an iron-sulfur center. In addition a rhombic EPR signal, attributed to Ni(III) species, is also observed [LeGall, J., Ljungdahl, P., Moura, I., Peck, H.D., Jr, Xavier, A.V., Moura, J.J.G., Teixeira, M., Huynh, B.H., and DerVartanian, D.V. (1982) Biochem. Biophys. Res. Commun. 106, 610-616; and Cammack, R., Patil, D., Aguirre, R., and Hatchikian, E.C., (1982) FEBS Lett. 142, 289-292]. At higher temperatures (77 K) the iron-sulfur EPR signal is broader and all the EPR features of the rhombic nickel signal can easily be observed. We have now obtained additional information concerning the redox properties of these EPR active centers, using an EPR redox titration method in the presence of dye mediators at pH = 8.5. The mid-point potential was determined to be -70 mV for the Fe,S cluster and -220 mV for the Ni center. Intermediate oxidation states were obtained upon partial reduction with either dithionite or hydrogen. Although upon dithionite reduction the centers are reduced in the order of decreasing mid-point reduction potentials, under a hydrogen atmosphere the nickel center reduces preferentially. This suggests a catalytic involvement of the nickel redox center in the binding of hydrogen. Preliminary Mossbauer studies on Desulfovibrio gigas hydrogenase reveal the presence of a paramagnetic 3 Fe center and two 4 Fe centers. The 3 Fe center is responsible for the g = 2.02 EPR signal but the two 4 Fe centers have been so far undetectable by EPR.

Mössbauer and EPR evidence for nickel and 3Fe cluster in the hydrogenases of D. desulfuricans and D. gigas, Huynh, B. H., Legall J., Dervartanian D. V., Peck Jr H. D., Krüger H. J., Moura I., Moura J. J. G., and Xavier A. V. , Inorganica Chimica Acta, Volume 79, p.136, (1983) AbstractWebsite
n/a
1982
Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase, Moura, J. J., Moura I., Huynh B. H., Kruger H. J., Teixeira M., DuVarney R. C., Dervartanian D. V., Xavier A. V., Peck, H. D. Jr., and Legall J. , Biochem Biophys Res Commun, Oct 29, Volume 108, Number 4, p.1388-93, (1982) AbstractWebsite
n/a
The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas, Legall, J., Ljungdahl P. O., Moura I., Peck, H. D. Jr., Xavier A. V., Moura J. J., Teixera M., Huynh B. H., and Dervartanian D. V. , Biochem Biophys Res Commun, May 31, Volume 106, Number 2, p.610-6, (1982) AbstractWebsite
n/a
Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans, Kruger, H. J., Huynh B. H., Ljungdahl P. O., Xavier A. V., Dervartanian D. V., Moura I., Peck, H. D. Jr., Teixeira M., Moura J. J., and Legall J. , J Biol Chem, Dec 25, Volume 257, Number 24, p.14620-3, (1982) AbstractWebsite

Hydrogenase from Desulfovibrio desulfuricans (ATCC No. 27774) grown in unenriched and in enriched 61Ni and 57Fe media has been purified to apparent homogeneity. Two fractions of enzymes with hydrogenase activity were separated and were termed hydrogenase I and hydrogenase II. they were shown to have similar molecular weights (77,600 for hydrogenase I and 75,500 for hydrogenase II), to be composed of two polypeptide chains, and to contain Ni and non-heme iron. Because of its higher specific activity (152 versus 97) hydrogenase II was selected for EPR and Mossbauer studies. As isolated, hydrogenase II exhibits an "isotropic" EPR signal at g = 2.02 and a rhombic EPR signal at g = 2.3, 2.2, and 2.0. Isotopic substitution of 61Ni proves that the rhombic signal is due to Ni. Combining the Mossbauer and EPR data, the isotropic g = 2.02 EPR signal was shown to originate from a 3Fe cluster which may have oxygenous or nitrogenous ligands. In addition, the Mossbauer data also revealed two [4Fe-4S]2+ clusters iun each molecule of hydrogenase II. The EPR and Mossbauer data of hydrogenase I were found to be identical to those of hydrogenase II, indicating that both enzymes have common metallic centers.

Mossbauer and EPR studies on nitrite reductase from Thiobacillus denitrificans, Huynh, B. H., Lui M. C., Moura J. J., Moura I., Ljungdahl P. O., Munck E., Payne W. J., Peck, H. D. Jr., Dervartanian D. V., and Legall J. , J Biol Chem, Aug 25, Volume 257, Number 16, p.9576-81, (1982) AbstractWebsite
n/a
1979
Oxidation-reduction potentials of the hemes in cytochrome C3 from Desulfovibrio gigas in the presence and absence of ferredoxin by EPR spectroscopy, Xavier, A. V., Moura J. J., Legall J., and Dervartanian D. V. , Biochimie, Volume 61, Number 5-6, p.689-95, (1979) AbstractWebsite

1. Ferricytochrome c3 from D. gigas exhibits two low-spin ferric heme EPR resonances with gz-values at 2.959 and 2.853. Ferrocytochrome c3 is diamagnetic based on the absence of any EPR signals. 2. EPR potentiometric titrations result in the resolution of the two low-spin ferric heme resonances into two additional heme components representing in total the four hemes of the cytochrome, with EM values of -235 mV and -315 mV at heme resonance I and EM values of -235 mV and -306 mV at heme resonance II. 3. EPR spectroscopy has detected a significant diminution of intensity (approx. 60 p. 100) in the gx amplitude of ferricytochrome c3 in the presence of D. gigas ferredoxin II. The presence of ferredoxin II also causes a more negative shift in the EM of the second components of the signals at heme resonances I and II of cytochrome C3. Both observations suggest that an interaction has occurred between cytochrome C3 and ferredoxin II. 4. The results presented suggest that the heme ligand environment of ferricytochrome c3 from D. gigas is less perturbed and/or less asymmetric than environment for ferricytochrome c3 from D. vulgaris whose EPR behavior indicates the non-equivalence of all four hemes.

1977
Spectroscopic studies of the oxidation-reduction properties of three forms of ferredoxin from Desulphovibrio gigas, Cammack, R., Rao K. K., Hall D. O., Moura J. J., Xavier A. V., Bruschi M., Legall J., Deville A., and Gayda J. P. , Biochim Biophys Acta, Feb 22, Volume 490, Number 2, p.311-21, (1977) AbstractWebsite

Electron paramagnetic resonance spectra were recorded of three forms of Desulphovibrio gigas ferredoxin, FdI, FdI' and FdII. The g = 1.94 signal seen in dithionite-reduced samples is strong in FdI, weaker in FdI' and very small in FdII. The g = 2.02 signal in the oxidized proteins is weak in FdI and strongest in FdII. It is concluded that most of the 4Fe-4S centres in FdI change between states C- and C2-; FdI' contain both types of centre. There is no evidence that any particular centre can change reversibly between all three oxidation states. Circular dichroism spectra show differences between FdI and FdII even in the diamagnetic C2- state. The redox potentials of the iron-sulphur centres of the three oligomers (forms) are different. After formation of the apo-protein of FdII and reconstitution with iron and sulphide, the protein behaves more like FdI, showing a strong g = 1.94 signal in the reduced states.