Publications

Export 107 results:
Sort by: Author [ Title  (Asc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
T
Topography of human cytochrome b5/cytochrome b5 reductase interacting domain and redox alterations upon complex formation, Samhan-Arias, A. K., Almeida R. M., Ramos S., Cordas C. M., Moura I., Gutierrez-Merino C., and Moura J. J. G. , Biochim Biophys Acta, Volume 1859, p.78-87, (2018)
Tungsten-containing formate dehydrogenase from Desulfovibrio gigas: metal identification and preliminary structural data by multi-wavelength crystallography, Raaijmakers, H., Teixeira S., Dias J. M., Almendra M. J., Brondino C. D., Moura I., Moura J. J., and Romao M. J. , J Biol Inorg Chem, Apr, Volume 6, Number 4, p.398-404, (2001) AbstractWebsite

The tungsten-containing formate dehydrogenase (W-FDH) isolated from Desulfovibrio gigas has been crystallized in space group P2(1), with cell parameters a = 73.8 A, b = 111.3 A, c = 156.6 A and beta = 93.7 degrees. These crystals diffract to beyond 2.0 A on a synchrotron radiation source. W-FDH is a heterodimer (92 kDa and 29 kDa subunits) and two W-FDH molecules are present in the asymmetric unit. Although a molecular replacement solution was found using the periplasmic nitrate reductase as a search model, additional phasing information was needed. A multiple-wavelength anomalous dispersion (MAD) dataset was collected at the W- and Fe-edges, at four different wavelengths. Anomalous and dispersive difference data allowed us to unambiguously identify the metal atoms bound to W-FDH as one W atom with a Se-cysteine ligand as well as one [4Fe-4S] cluster in the 92 kDa subunit, and three additional [4Fe-4S] centers in the smaller 29 kDa subunit. The D. gigas W-FDH was previously characterized based on metal analysis and spectroscopic data. One W atom was predicted to be bound to two molybdopterin guanine dinucleotide (MGD) pterin cofactors and two [4Fe-4S] centers were proposed to be present. The crystallographic data now reported reveal a selenium atom (as a Se-cysteine) coordinating to the W site, as well as two extra [4Fe-4S] clusters not anticipated before. The EPR data were re-evaluated in the light of these new results.

U
Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to different electron acceptors - biosynthetic costs modulate substrate selection, Sousa, J. R., Silveira C. M., Fontes P., Roma-Rodrigues C., Fernandes A. R., Van Driessche G., Devreese B., Moura I., Moura J. J. G., and Almeida M. G. , Biochim Biophys Acta, Volume 1865, p.1455-1469, (2017)
Using cytochrome c(3) to make selenium nanowires, Abdelouas, A., Gong W. L., Lutze W., Shelnutt J. A., Franco R., and Moura I. , Chemistry of Materials, Jun, Volume 12, Number 6, p.1510-+, (2000) AbstractWebsite

We report on a new method to make nanostructures in aqueous solution at room temperature. We used the protein cytochrome c(3) to catalyze reduction of selenate (SeO42-) to selenium Se-0 by dithionite. Reduction was instantaneous. After a week spherical nanoparticles of red Se-0 (about 50 nm diameter) precipitated, followed by self-assembling into crystalline nanowires, typically 1 mu m long. The nanowires were composed of one strand of spherical particles; thicker strands contained several nanoparticles in parallel.

V
Vanadate oligomers interaction with phosphorylated myosin, Tiago, T., Aureliano M., Duarte R. O., and Moura J. J. G. , Inorganica Chimica Acta, Nov 15, Volume 339, p.317-321, (2002) AbstractWebsite

Using a myosin preparation containing endogenous myosin light-chain (LC2) kinase and phosphatase and calmodulin, i.e. near physiological ones, the interaction of vanadate oligomers with phosphorylated myosin was evaluated. Decavanadate or metavanadate solutions (2-15 mM total vanadate) did not prevent the phosphorylation state of the regulatory myosin lightchain, as observed by urea-polyacrylamide gel electrophoresis. The relative order of line broadening upon protein addition, reflecting the interaction of the vanadate oligomers with phosphorylated myosin, was V10 > V-4 > V-1 = 1 whereas, no changes were observed for monomeric vanadate. In the presence of ATP, V-1 signal was shifted upfield 2 ppm and became broadened, while V4 signal became narrowed. Moreover, a significant increase in myosin ATPase inhibition (60%) was observed when decameric vanadate species were present (1.4 mM). It is concluded that, under conditions near physiological ones, decameric vanadate differs from vanadate oligomers present in metavanadate solutions due to its strong interaction with the phosphorylated enzyme and myosin ATPase inhibition. Besides, ATP decreases the affinity of myosin for tetravanadate, induces the interaction with monomeric vanadate, whereas it does not affect decameric vanadate interaction. (C) 2002 Elsevier Science B.V. All rights reserved.

Vanadium distribution, lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration, Soares, S. S., Martins H., Duarte R. O., Moura J. J., Coucelo J., Gutierrez-Merino C., and Aureliano M. , J Inorg Biochem, Jan, Volume 101, Number 1, p.80-8, (2007) AbstractWebsite

The contribution of decameric vanadate species to vanadate toxic effects in cardiac muscle was studied following an intravenous administration of a decavanadate solution (1mM total vanadium) in Sparus aurata. Although decameric vanadate is unstable in the assay medium, it decomposes with a half-life time of 16 allowing studying its effects not only in vitro but also in vivo. After 1, 6 and 12h upon decavanadate administration the increase of vanadium in blood plasma, red blood cells and in cardiac mitochondria and cytosol is not affected in comparison to the administration of a metavanadate solution containing labile oxovanadates. Cardiac tissue lipid peroxidation increases up to 20%, 1, 6 and 12h after metavanadate administration, whilst for decavanadate no effects were observed except 1h after treatment (+20%). Metavanadate administration clearly differs from decavanadate by enhancing, 12h after exposure, mitochondrial superoxide dismutase (SOD) activity (+115%) and not affecting catalase (CAT) activity whereas decavanadate increases SOD activity by 20% and decreases (-55%) mitochondrial CAT activity. At early times of exposure, 1 and 6h, the only effect observed upon decavanadate administration was the increase by 20% of SOD activity. In conclusion, decavanadate has a different response pattern of lipid peroxidation and oxidative stress markers, in spite of the same vanadium distribution in cardiac cells observed after decavanadate and metavanadate administration. It is suggested that once formed decameric vanadate species has a different reactivity than vanadate, thus, pointing out that the differential contribution of vanadium oligomers should be taken into account to rationalize in vivo vanadate toxicity.

Z
Zinc-substituted Desulfovibrio gigas desulforedoxins: resolving subunit degeneracy with nonsymmetric pseudocontact shifts, Goodfellow, B. J., Nunes S. G., Rusnak F., Moura I., Ascenso C., Moura J. J., Volkman B. F., and Markley J. L. , Protein Sci, Oct, Volume 11, Number 10, p.2464-70, (2002) AbstractWebsite

Desulfovibrio gigas desulforedoxin (Dx) consists of two identical peptides, each containing one [Fe-4S] center per monomer. Variants with different iron and zinc metal compositions arise when desulforedoxin is produced recombinantly from Escherichia coli. The three forms of the protein, the two homodimers [Fe(III)/Fe(III)]Dx and [Zn(II)/Zn(II)]Dx, and the heterodimer [Fe(III)/Zn(II)]Dx, can be separated by ion exchange chromatography on the basis of their charge differences. Once separated, the desulforedoxins containing iron can be reduced with added dithionite. For NMR studies, different protein samples were prepared labeled with (15)N or (15)N + (13)C. Spectral assignments were determined for [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx from 3D (15)N TOCSY-HSQC and NOESY-HSQC data, and compared with those reported previously for [Zn(II)/Zn(II)]Dx. Assignments for the (13)C(alpha) shifts were obtained from an HNCA experiment. Comparison of (1)H-(15)N HSQC spectra of [Zn(II)/Zn(II)]Dx, [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx revealed that the pseudocontact shifts in [Fe(II)/Zn(II)]Dx can be decomposed into inter- and intramonomer components, which, when summed, accurately predict the observed pseudocontact shifts observed for [Fe(II)/Fe(II)]Dx. The degree of linearity observed in the pseudocontact shifts for residues >/=8.5 A from the metal center indicates that the replacement of Fe(II) by Zn(II) produces little or no change in the structure of Dx. The results suggest a general strategy for the analysis of NMR spectra of homo-oligomeric proteins in which a paramagnetic center introduced into a single subunit is used to break the magnetic symmetry and make it possible to obtain distance constraints (both pseudocontact and NOE) between subunits.