Publications

Export 17 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
{
Nunes, D, Calmeiro TRR, Nandy S, Pinto JVV, Pimentel A, Barquinha P, Carvalho PAA, Walmsley JCC, Fortunato E, Martins R.  2016.  {Charging effects and surface potential variations of Cu-based nanowires}, nov. Thin Solid Films. 601:45–53. AbstractWebsite

The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO2 dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu2O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WFCuO {\textgreater} WFCu {\textgreater} WFCu2O.

Zanarini, S, Garino N, Nair JR, Francia C, Wojcik PJ, Pereira L, Fortunato E, Martins R, Bodoardo S, Penazzi N.  2014.  {Contrast Enhancement in Polymeric Electrochromic Devices Encompassing Room Temperature Ionic Liquids}. International Journal of Electrochemical Science. 9:1650–1662., Number 4 Abstract
n/a
Nunes, D, Pimentel A, Barquinha P, Carvalho PA, Fortunato E, Martins R.  2014.  {Cu2O polyhedral nanowires produced by microwave irradiation}. JOURNAL OF MATERIALS CHEMISTRY C. 2:6097–6103., Number 30 Abstract
n/a
Nandy, S, Gonçalves G, Pinto JV, Busani T, Figueiredo V, Pereira LÍ, {Paiva Martins} RF, Fortunato E.  2013.  {Current transport mechanism at metal-semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillars.}. Nanoscale. 5:11699–709., Number 23 AbstractWebsite

The present work focuses on a qualitative analysis of localised I-V characteristics based on the nanostructure morphology of highly dense arrays of p-type NiO nano-pillars (NiO-NPs). Vertically aligned NiO-NPs have been grown on different substrates by using a glancing angle deposition (GLAD) technique. The preferred orientation of as grown NiO-NPs was controlled by the deposition pressure. The NiO-NPs displayed a polar surface with a microscopic dipole moment along the (111) plane (Tasker's type III). Consequently, the crystal plane dependent surface electron accumulation layer and the lattice disorder at the grain boundary interface showed a non-uniform current distribution throughout the sample surface, demonstrated by a conducting AFM technique (c-AFM). The variation in I-V for different points in a single current distribution grain (CD-grain) has been attributed to the variation of Schottky barrier height (SBH) at the metal-semiconductor (M-S) interface. Furthermore, we observed that the strain produced during the NiO-NPs growth can modulate the SBH. Inbound strain acts as an external field to influence the local electric field at the M-S interface causing a variation in SBH with the NPs orientation. This paper shows that vertical arrays of NiO-NPs are potential candidates for nanoscale devices because they have a great impact on the local current transport mechanism due to its nanostructure morphology.

Nandy, S, Thapa R, Kumar M, Som T, Bundaleski N, Teodoro OMND, Martins R, Fortunato E.  2015.  {Efficient Field Emission from Vertically Aligned Cu2O1-delta(111) Nanostructure Influenced by Oxygen Vacancy}. ADVANCED FUNCTIONAL MATERIALS. 25:947–956., Number 6 Abstract
n/a
Zubizarreta, C, Berasategui EG, Bayon R, Galindo ER, Barros R, Gaspar D, Nunes D, Calmeiro T, Martins R, Fortunato E, Barriga J.  2014.  {Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering}. JOURNAL OF PHYSICS D-APPLIED PHYSICS. 47, Number 48 Abstract
n/a
Deuermeier, J, Wardenga HF, Morasch J, Siol S, Nandy S, Calmeiro T, Martins R, Klein A, Fortunato E.  2016.  {Highly conductive grain boundaries in copper oxide thin films}, jun. JOURNAL OF APPLIED PHYSICS. 119, Number 23 Abstract
n/a
Araujo, A, Caro C, Mendes MJ, Nunes D, Fortunato E, Franco R, Aguas H, Martins R.  2014.  {Highly efficient nanoplasmonic SERS on cardboard packaging substrates}. NANOTECHNOLOGY. 25, Number 41 Abstract
n/a
Pimentel, A, Ferreira S, Nunes D, Calmeiro T, Martins R, Fortunato E.  2016.  {Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study}. Materials. 9:299., Number 4 AbstractWebsite
n/a
Rodrigues, J, Mata D, Pimentel A, Nunes D, Martins R, Fortunato E, Neves AJ, Monteiro T, Costa FM.  2015.  {One-step synthesis of ZnO decorated CNT buckypaper composites and their optical and electrical properties}, may. Materials Science and Engineering: B. 195:38–44. AbstractWebsite
n/a
Nunes, D, Santos L, Duarte P, Pimentel A, Pinto JV, Barquinha P, Carvalho PA, Fortunato E, Martins R.  2015.  {Room temperature synthesis of Cu₂O nanospheres: optical properties and thermal behavior.}, feb. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada. 21:108–19., Number 1 AbstractWebsite

The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.

Santos, L, Nunes D, Calmeiro T, Branquinho R, Salgueiro D, Barquinha P, Pereira LÍ, Martins R, Fortunato E.  2015.  {Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.}, jan. ACS applied materials {&} interfaces. 7:638–46., Number 1 AbstractWebsite

Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

Goswami, S, Nandy S, Calmeiro TR, Igreja R, Martins R, Fortunato E.  2016.  {Stress Induced Mechano-electrical Writing-Reading of Polymer Film Powered by Contact Electrification Mechanism}. Scientific Reports. 6:19514. AbstractWebsite
n/a
Pimentel, A, Nunes D, Duarte P, Rodrigues J, Costa FM, Monteiro T, Martins R, Fortunato E.  2014.  {Synthesis of Long ZnO Nanorods under Microwave Irradiation or Conventional Heating}. The Journal of Physical Chemistry C. 118:14629–14639., Number 26 AbstractWebsite

The present work reports the synthesis of zinc oxide (ZnO) nanostructures produced either under microwave irradiation using low cost domestic microwave equipment or by conventional heating, both under hydrothermal conditions. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, room/low temperature photoluminescence, and Raman spectroscopy have been used to investigate the structure, morphology, and optical properties of the produced ZnO nanorods. Identical structures with aspect ratio up to 13 have been achieved for both synthesis routes displaying similar final properties. The hexagonal wurtzite structure has been identified, and a red-orange emission has been detected in the presence of UV irradiation for all the conditions studied. Thermal stability of the as-prepared nanostructures has been evaluated through thermogravimetric measurements revealing an increase of superficial defects. The as-prepared ZnO nanorods were tested as UV sensors on paper substrate, which led to fast response (30 s) and rapid recovery (100 s) times, as well as sensitivity up to 10 indicating that these materials may have a high potential in low cost, disposable UV photodetector applications.

Santos, L, Silveira CM, Elangovan E, Neto JP, Nunes D, Pereira LÍ, Martins R, Viegas J, Moura JJG, Todorovic S, Almeida GM, Fortunato E.  2016.  {Synthesis of WO3 nanoparticles for biosensing applications}, feb. Sensors and Actuators B: Chemical. 223:186–194. AbstractWebsite
n/a
Pavan, M, Rühle S, Ginsburg A, Keller DA, Barad H-N, Sberna PM, Nunes D, Martins R, Anderson AY, Zaban A, Fortunato E.  2015.  {TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis}, jan. Solar Energy Materials and Solar Cells. 132:549–556. AbstractWebsite

Here we present for the first time a TiO2/Cu2O all-oxide heterojunction solar cell entirely produced by spray pyrolysis onto fluorine doped tin oxide (FTO) covered glass substrates, using silver as a back contact. A combinatorial approach was chosen to investigate the impact of the TiO2 window layer and the Cu2O light absorber thicknesses. We observe an open circuit voltage up to 350mV and a short circuit current density which is strongly dependent of the Cu2O thickness, reaching a maximum of {\~{}}0.4mA/cm2. Optical investigation reveals that a thickness of 300nm spray pyrolysis deposited Cu2O is sufficient to absorb most photons with an energy above the symmetry allowed optical transition of 2.5eV, indicating that the low current densities are caused by strong recombination in the absorber that consists of small Cu2O grains.

Santos, L, Neto JP, Crespo A, Nunes D, Costa N, Fonseca IM, Barquinha P, Pereira LÍ, Silva J, Martins R, Fortunato E.  2014.  {WO3 Nanoparticle-Based Conformable pH Sensor}. ACS Applied Materials {&} Interfaces. 6:12226–12234., Number 15 AbstractWebsite

pH is a vital physiological parameter that can be used for disease diagnosis and treatment as well as in monitoring other biological processes. Metal/metal oxide based pH sensors have several advantages regarding their reliability, miniaturization, and cost-effectiveness, which are critical characteristics for in vivo applications. In this work, WO3 nanoparticles were electrodeposited on flexible substrates over metal electrodes with a sensing area of 1 mm2. These sensors show a sensitivity of ?56.7 ± 1.3 mV/pH, in a wide pH range of 9 to 5. A proof of concept is also demonstrated using a flexible reference electrode in solid electrolyte with a curved surface. A good balance between the performance parameters (sensitivity), the production costs, and simplicity of the sensors was accomplished, as required for wearable biomedical devices.