Export 4172 results:
Sort by: Author Title Type [ Year  (Desc)]
1988
Day, EP, Peterson J, Bonvoisin JJ, Moura I, Moura JJ.  1988.  Magnetization of the oxidized and reduced three-iron cluster of Desulfovibrio gigas ferredoxin II, Mar 15. J Biol Chem. 263:3684-9., Number 8 AbstractWebsite

The saturation magnetizations of the three iron cluster of ferredoxin II of Desulfovibrio gigas in both the oxidized and reduced states have been studied at fixed magnetic fields up to 4.5 tesla over the temperature range from 1.8 to 200 K. The low field (0.3 tesla) susceptibility of oxidized ferredoxin II obeys the Curie law over this entire temperature range. This establishes -2Jox greater than 200 cm-1 as the lower limit for the antiferromagnetic exchange coupling of oxidized ferredoxin II. The saturation magnetizations of reduced ferredoxin II at several fixed fields yield a nested family of curves which can be fit with spin S = 2 and D = -2.7(4) cm-1 (with E/D assigned the value 0.23 as determined by Mossbauer and EPR spectra). The low field susceptibility of reduced ferredoxin II also obeys the Curie law from approximately 4 up to 200 K. This establishes -2Jred greater than 40 cm-1 as the lower limit for the antiferromagnetic coupling of reduced ferredoxin II.

Patil, DS, Moura JJ, He SH, Teixeira M, Prickril BC, Dervartanian DV, Peck, H. D. J, Legall J, Huynh BH.  1988.  EPR-detectable redox centers of the periplasmic hydrogenase from Desulfovibrio vulgaris, Dec 15. J Biol Chem. 263:18732-8., Number 35 AbstractWebsite

The periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenbourough NCIB 8303) belongs to the category of [Fe] hydrogenase which contains only iron-sulfur clusters as its prosthetic groups. Amino acid analyses were performed on the purified D. vulgaris hydrogenase. The amino acid composition obtained compared very well with the result derived from the nucleotide sequence of the structural gene (Voordouw, G., Brenner, S. (1985) Eur. J. Biochem. 148, 515-520). Detailed EPR reductive titration studies on the D. vulgaris hydrogenase were performed to characterize the metal centers in this hydrogenase. In addition to the three previously observed EPR signals (namely, the "isotropic" 2.02 signal, the rhombic 2.10 signal, and the complex signal of the reduced enzyme), a rhombic signal with resonances at the g-values of 2.06, 1.96, and 1.89 (the rhombic 2.06 signal) was detected when the samples were poised at potentials between 0 and -250 mV (with respect to normal hydrogen electrode). The midpoint redox potentials for each of the four EPR-active species were determined, and the characteristics of each EPR signal are described. Both the rhombic 2.10 and 2.06 signals exhibit spectral properties that are distinct from a ferredoxin-type [4Fe-4S] cluster and are proposed to originate from the same H2-binding center but in two different conformations. The complex signal of the reduced hydrogenase has been shown to represent two spin-spin interacting ferredoxin-type [4Fe-4S]1+ clusters (Grande, H. J., Dunham, W. R., Averill, B., Van Dijk, C., and Sands, R. H. (1983) Eur. J. Biochem. 136, 201-207). The titration data indicated a strong cooperative effect between these two clusters during their reduction. In an effort to accurately estimate the number of iron atoms/molecule of hydrogenase, plasma emission and chemical methods were used to determine the iron contents in the samples; and four different methods, including amino acid analysis, were used for protein determination. The resulting iron stoichiometries were found to be method-dependent and vary over a wide range (+/- 20%). The uncertainties involved in the determination of iron stoichiometry are discussed.

Liu, MC, Costa C, Coutinho IB, Moura JJ, Moura I, Xavier AV, Legall J.  1988.  Cytochrome components of nitrate- and sulfate-respiring Desulfovibrio desulfuricans ATCC 27774, Dec. J Bacteriol. 170:5545-51., Number 12 AbstractWebsite

Three multiheme c-type cytochromes--the tetraheme cytochrome c3 (molecular weight [MW] 13,500), a dodecaheme cytochrome c (MW 40,800), and a "split-Soret" cytochrome c (MW 51,540), which is a dimer with 2 hemes per subunit (MW 26,300)--were isolated from the soluble fraction of Desulfovibrio desulfuricans (ATCC 27774) grown under nitrate- or sulfate-respiring conditions. Two of them, the dodecaheme and the split-Soret cytochromes, showed no similarities to any of the c-type cytochromes isolated from other sulfate-reducing bacteria, while the tetraheme cytochrome c3 appeared to be analogous to the cytochrome c3 found in other sulfate-reducing bacteria. For all three multiheme c-type cytochromes isolated, the homologous proteins from nitrate- and sulfate-grown cells were indistinguishable in amino acid composition, physical properties, and spectroscopic characteristics. It therefore appears that the same c-type cytochrome components are present when D. desulfuricans ATCC 27774 cells are grown under either condition. This is in contrast to the considerable difference found in Pseudomonas perfectomarina (Liu et al., J. Bacteriol. 154:278-286, 1983), a marine denitrifier, when the cells are grown on nitrate or oxygen as the terminal electron acceptor. In addition, two spectroscopy methods capable of revealing minute structural variations in proteins provided identical information about the tetraheme cytochrome c3 from nitrate-grown and sulfate-grown cells.

Saint-Martin, P, Lespinat PA, Fauque G, Berlier Y, Legall J, Moura I, Teixeira M, Xavier AV, Moura JJ.  1988.  Hydrogen production and deuterium-proton exchange reactions catalyzed by Desulfovibrio nickel(II)-substituted rubredoxins, Dec. Proc Natl Acad Sci U S A. 85:9378-80., Number 24 AbstractWebsite

The nickel tetrahedral sulfur-coordinated core formed upon metal replacement of the native iron in Desulfovibrio sp. rubredoxins is shown to mimic the reactivity pattern of nickel-containing hydrogenases with respect to hydrogen production, deuterium-proton exchange, and inhibition by carbon monoxide.

Fauque, G, Peck, H. D. J, Moura JJ, Huynh BH, Berlier Y, Dervartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I,, et al.  1988.  The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, Dec. FEMS Microbiol Rev. 4:299-344., Number 4 AbstractWebsite

Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)

Stewart, DE, Legall J, Moura I, Moura JJ, Peck, H. D. J, Xavier AV, Weiner PK, Wampler JE.  1988.  A hypothetical model of the flavodoxin-tetraheme cytochrome c3 complex of sulfate-reducing bacteria, Apr 5. Biochemistry. 27:2444-50., Number 7 AbstractWebsite

A hypothetical model of the flavodoxin-tetraheme cytochrome c3 electron-transfer complex from the sulfate-reducing bacterium Desulfovibrio vulgaris has been constructed by using interactive computer graphics based on electrostatic potential field calculations and previous NMR experiments. Features of the proposed complex are (1) van der Waals contact between the flavin mononucleotide prosthetic group of flavodoxin and one heme of the cytochrome, (2) unique complementarity of electrostatic fields between the region surrounding this heme and the region surrounding the exposed portion of the flavin mononucleotide group of flavodoxin, and (3) no steric interferences between the two polypeptide chains in the complex. This complex is consistent with all structural and spectroscopic data available.

Kowal, AT, Zambrano IC, Moura I, Moura JJG, Legall J, Johnson MK.  1988.  Electronic and magnetic properties of nickel-substituted rubredoxin: a variable-temperature magnetic circular dichroism study, 1988/04/01. Inorganic Chemistry. 27:1162-1166., Number 7: American Chemical Society AbstractWebsite
n/a
Moura, I, Legall J, Lino AR, Peck HD, Fauque G, Xavier AV, Dervartanian DV, Moura JJG, Huynh BH.  1988.  Characterization of two dissimilatory sulfite reductases (desulforubidin and desulfoviridin) from the sulfate-reducing bacteria. Moessbauer and EPR studies, 1988/02/17. Journal of the American Chemical Society. 110:1075-1082., Number 4: American Chemical Society AbstractWebsite
n/a
Huynh, BH, Moura I, Lino AR, Moura JJG, Legall J.  1988.  Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria, 1988. Hyperfine Interactions. 42:905-908., Number 1-4 AbstractWebsite
n/a
Moura, JJG, Moura I, Teixeira M, Xavier AV, Fauque GD, Legall J.  1988.  NICKEL-CONTAINING HYDROGENASES, 1988. Metal Ions in Biological Systems. 23:285-314. AbstractWebsite
n/a
Ramos, MJJ, Dionísio M, Gonçalves R, Diogo H.  1988.  A further view on the calculation of the enthalpy of cavity formation in liquids. The influence of the cavity size and shape. Canadian Journal of Chemistry. 66(11):2894-2902.Website
Huynh, B, Moura I, Lino A, Moura J, Legall J.  1988.  Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria. Hyperfine Interactions. 42:905-908., Number 1: Springer Netherlands AbstractWebsite

Mössbauer, EPR, and biochemical techniques were used to characterize two dissimilatory sulfite reductases: desulforubidin from Desulfovibrio baculatus strain DSM 1743 and desulfoviridin from Desulfovibrio gigas . For each molecule of desulforubidin, there are two sirohemes and four [4Fe−4S] clusters. The [4Fe−4S] clusters are in the diamagnetic 2+ oxidation state. The sirohemes are high-spin ferric (S=5/2) and each siroheme is exchanged-coupled to a [4Fe−4S] 2+ cluster. Such an exchange-coupled siroheme-[4Fe−4S] unit has also been found in the assimilatory sulfite reductase from Escherichia coli /1/ and in a low-molecular weight sulfite reductase from Desulfovibrio vulgaris /2/. For each molecule of defulfoviridin, there are two tetrahydroporphyrin groups and four [4Fe−4S] 2+ clusters. To our surprise, we discovered that about 80% of the tetrahydroporphyrin groups, however, do not bind iron.

Kremer, DR, Veenhuis M, Fauque G, Peck HD, Legall J, Lampreia J, Moura JJG, Hansen TA.  1988.  Immunocytochemical localization of APS reductase and bisulfite reductase in three <i>Desulfovibrio</i> species. Archives of Microbiology. 150:296-301., Number 3: Springer Berlin / Heidelberg AbstractWebsite

The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were embedded and ultrathin sections were incubated with antibodies and subsequently labeled with protein A-gold. The bisulfite reductase in all three strains and APS reductase in d. gigas and D. vulgaris were found in the cytoplasm. The labeling of d. thermophilus with APS reductase antibodies resulted in a distribution of gold particles over the cytoplasmic membrane region. The localization of the two enzymes is discussed with respect to the mechanism and energetics of dissimilatory sulfate reduction.

Teixeira, G, Aviles T, Dias AR, Pina F.  1988.  A KINETIC-STUDY OF PHOTOSUBSTITUTION OF CARBON-MONOXIDE AND TRIPHENYLPHOSPHINE IN COMPLEXES MN(ETA-5-CH3C5H4)(CO)3-N(PPH3)N (N=0, 1 AND 2). Journal of Organometallic Chemistry. 353:83-91., Number 1 AbstractWebsite
n/a
FIGUEIREDO, P, Pina F.  1988.  A PHOTOCATALYTIC CYCLE FOR MILD OXIDATION BY DIOXYGEN OF SUBSTRATES EASILY OXIDIZABLE BY IODINE. Journal of Photochemistry and Photobiology a-Chemistry. 44:57-61., Number 1 AbstractWebsite
n/a
Pina, F, Maestri M.  1988.  PHOTOCHEMISTRY OF CO(EDTA)–I-SYSTEM IN AQUEOUS-SOLUTIONS. Inorganica Chimica Acta. 142:223-228., Number 2 AbstractWebsite
n/a
1987
Turner, N, Barata B, Bray RC, Deistung J, Legall J, Moura JJ.  1987.  The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase, May 1. Biochem J. 243:755-61., Number 3 AbstractWebsite

The molybdenum iron-sulphur protein originally isolated from Desulfovibrio gigas by Moura, Xavier, Bruschi, Le Gall, Hall & Cammack [(1976) Biochem. Biophys. Res. Commun. 72, 782-789] has been further investigated by e.p.r. spectroscopy of molybdenum(V). The signal obtained on extended reduction of the protein with sodium dithionite has been shown, by studies at 9 and 35 HGz in 1H2O and 2H2O and computer simulations, to have parameters corresponding to those of the Slow signal from the inactive desulpho form of various molybdenum-containing hydroxylases. Another signal obtained on brief reduction of the protein with small amounts of dithionite was shown by e.p.r. difference techniques to be a Rapid type 2 signal, like that from the active form of such enzymes. In confirmation that the protein is a molybdenum-containing hydroxylase, activity measurements revealed that it had aldehyde:2,6-dichlorophenol-indophenol oxidoreductase activity. No such activity towards xanthine or purine was observed. Salicylaldehyde was a particularly good substrate, and treatment of the protein with it also gave rise to the Rapid signal. Molybdenum cofactor liberated from the protein was active in the nit-1 Neurospora crassa nitrate reductase assay. It is concluded that the protein is a form of an aldehyde oxidase or dehydrogenase. From the intensity of the e.p.r. signals and from enzyme activity measurements, 10-30% of the protein in the sample examined appeared to be in the functional form. The evolutionary significance of the protein, which may represent a primitive form of the enzyme rather than a degradation product, is discussed briefly.

Huynh, BH, Patil DS, Moura I, Teixeira M, Moura JJ, Dervartanian DV, Czechowski MH, Prickril BC, Peck, H. D. J, Legall J.  1987.  On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mossbauer and redox-titration studies, Jan 15. J Biol Chem. 262:795-800., Number 2 AbstractWebsite

The [NiFe] hydrogenase isolated from Desulfovibrio gigas was poised at different redox potentials and studied by Mossbauer spectroscopy. The data firmly establish that this hydrogenase contains four prosthetic groups: one nickel center, one [3Fe-xS], and two [4Fe-4S] clusters. In the native enzyme, both the nickel and the [3Fe-xS] cluster are EPR-active. At low temperature (4.2 K), the [3Fe-xS] cluster exhibits a paramagnetic Mossbauer spectrum typical for oxidized [3Fe-xS] clusters. At higher temperatures (greater than 20 K), the paramagnetic spectrum collapses into a quadrupole doublet with parameters magnitude of delta EQ magnitude of = 0.7 +/- 0.06 mm/s and delta = 0.36 +/- 0.06 mm/s, typical of high-spin Fe(III). The observed isomer shift is slightly larger than those observed for the three-iron clusters in D. gigas ferredoxin II (Huynh, B. H., Moura, J. J. G., Moura, I., Kent, T. A., LeGall, J., Xavier, A. V., and Munck, E. (1980) J. Biol. Chem. 255, 3242-3244) and in Azotobacter vinelandii ferredoxin I (Emptage, M. H., Kent, T. A., Huynh, B. H., Rawlings, J., Orme-Johnson, W. H., and Munck, E. (1980) J. Biol. Chem. 255, 1793-1796) and may indicate a different iron coordination environment. When D. gigas hydrogenase is poised at potentials lower than -80 mV (versus normal hydrogen electrode), the [3Fe-xS] cluster is reduced and becomes EPR-silent. The Mossbauer data indicate that the reduced [3Fe-xS] cluster remains intact, i.e. it does not interconvert into a [4Fe-4S] cluster. Also, the electronic properties of the reduced [3Fe-xS] cluster suggest that it is magnetically isolated from the other paramagnetic centers.

Moura, I, Fauque G, Legall J, Xavier AV, Moura JJ.  1987.  Characterization of the cytochrome system of a nitrogen-fixing strain of a sulfate-reducing bacterium: Desulfovibrio desulfuricans strain Berre-Eau, Feb 2. Eur J Biochem. 162:547-54., Number 3 AbstractWebsite

Two c-type cytochromes were purified and characterized by electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopic techniques, from the sulfate-reducer nitrogen-fixing organism, Desulfovibrio desulfuricans strain Berre-Eau (NCIB 8387). The purification procedures included several chromatographic steps on alumina, carboxymethylcellulose and gel filtration. A tetrahaem and a monohaem cytochrome were identified. The multihaem cytochrome has visible, EPR and NMR spectra with general properties similar to other low-potential bis-histidinyl axially bound haem proteins, belonging to the class of tetrahaem cytochrome c3 isolated from other Desulfovibrio species. The monohaem cytochrome c553 is ascorbate-reducible and its EPR and NMR data are characteristic of a cytochrome with methionine-histidine ligation. Their properties are compared with other homologous proteins isolated from sulfate-reducing bacteria.

Fauque, G, Moura I, Xavier AV, Galliano N, Moura JJG, Legall J.  1987.  Characterization Of Electron-Transfer Proteins From The Nitrogen-Fixing Sulfate-Reducing Bacterium Desulfovibrio-Desulfuricans Berre-Eau, Dec. Biochemical Society Transactions. 15:1049-1050., Number 6 AbstractWebsite
n/a
Teixeira, M, Fauque G, Moura I, Lespinat PA, Berlier Y, Prickril B, Peck, H. D. J, Xavier AV, Legall J, Moura JJ.  1987.  Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties, Aug 17. Eur J Biochem. 167:47-58., Number 1 AbstractWebsite

The hydrogenase from Desulfovibrio baculatus (DSM 1743) was purified from each of three different fractions: soluble periplasmic (wash), soluble cytoplasmic (cell disruption) and membrane-bound (detergent solubilization). Plasma-emission metal analysis detected in all three fractions the presence of iron plus nickel and selenium in equimolecular amounts. These hydrogenases were shown to be composed of two non-identical subunits and were distinct with respect to their spectroscopic properties. The EPR spectra of the native (as isolated) enzymes showed very weak isotropic signals centered around g approximately 2.0 when observed at low temperature (below 20 K). The periplasmic and membrane-bound enzymes also presented additional EPR signals, observable up to 77 K, with g greater than 2.0 and assigned to nickel(III). The periplasmic hydrogenase exhibited EPR features at 2.20, 2.06 and 2.0. The signals observed in the membrane-bound preparations could be decomposed into two sets with g at 2.34, 2.16 and approximately 2.0 (component I) and at 2.33, 2.24, and approximately 2.0 (component II). In the reduced state, after exposure to an H2 atmosphere, all the hydrogenase fractions gave identical EPR spectra. EPR studies, performed at different temperatures and microwave powers, and in samples partially and fully reduced (under hydrogen or dithionite), allowed the identification of two different iron-sulfur centers: center I (2.03, 1.89 and 1.86) detectable below 10 K, and center II (2.06, 1.95 and 1.88) which was easily saturated at low temperatures. Additional EPR signals due to transient nickel species were detected with g greater than 2.0, and a rhombic EPR signal at 77 K developed at g 2.20, 2.16 and 2.0. This EPR signal is reminiscent of the Ni-signal C (g at 2.19, 2.14 and 2.02) observed in intermediate redox states of the well characterized Desulfovibrio gigas hydrogenase (Teixeira et al. (1985) J. Biol. Chem. 260, 8942]. During the course of a redox titration at pH 7.6 using H2 gas as reductant, this signal attained a maximal intensity around -320 mV. Low-temperature studies of samples at redox states where this rhombic signal develops (10 K or lower) revealed the presence of a fast-relaxing complex EPR signal with g at 2.25, 2.22, 2.15, 2.12, 2.10 and broad components at higher field. The soluble hydrogenase fractions did not show a time-dependent activation but the membrane-bound form required such a step in order to express full activity.(ABSTRACT TRUNCATED AT 400 WORDS)

Papaefthymiou, V, Girerd JJ, Moura I, Moura JJG, Muenck E.  1987.  Moessbauer study of D. gigas ferredoxin II and spin-coupling model for Fe3S4 cluster with valence delocalization, 1987/07/01. Journal of the American Chemical Society. 109:4703-4710., Number 15: American Chemical Society AbstractWebsite
n/a
Surerus, KK, Munck E, Moura I, Moura JJG, Legall J.  1987.  Evidence for the formation of a ZnFe3S4 cluster in Desulfovibrio gigas ferredoxin II, 1987/06/01. Journal of the American Chemical Society. 109:3805-3807., Number 12: American Chemical Society AbstractWebsite
n/a
Werth, MT, Kurtz DM, Moura I, Legall J.  1987.  Proton NMR spectra of rubredoxins: new resonances assignable to .alpha.-CH and .beta.-CH2 hydrogens of cysteinate ligands to iron(II), 1987/01/01. Journal of the American Chemical Society. 109:273-275., Number 1: American Chemical Society AbstractWebsite
n/a
Prickril, BC, He S-H, Li C, Menon N, Choi E-S, Przybyla AE, DerVartanian DV, Peck Jr HD, Fauque G, Legall J, Teixeira M, Moura I, Moura JJG, Patil D, Huynh BH.  1987.  Identification of three classes of hydrogenase in the genus, Desulfovibrio. Biochemical and Biophysical Research Communications. 149:369-377., Number 2 AbstractWebsite
n/a