Dell'Acqua, S, Pauleta SR, Monzani E, Pereira AS, Casella L, Moura JJ, Moura I.
2008.
Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking studies, Oct 14. Biochemistry. 47:10852-62., Number 41
AbstractThe multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.
Moniz, A, c}as JMC{\c.
2008.
Editorial Note, November. Enterprise and Work Innovation Studies. 4:7-8., Number 4
AbstractNo abstract is available for this item.
Moura, I, Pauleta SR, Moura JJ.
2008.
Enzymatic activity mastered by altering metal coordination spheres, Nov. J Biol Inorg Chem. 13:1185-95., Number 8
AbstractMetalloenzymes control enzymatic activity by changing the characteristics of the metal centers where catalysis takes place. The conversion between inactive and active states can be tuned by altering the coordination number of the metal site, and in some cases by an associated conformational change. These processes will be illustrated using heme proteins (cytochrome c nitrite reductase, cytochrome c peroxidase and cytochrome cd1 nitrite reductase), non-heme proteins (superoxide reductase and [NiFe]-hydrogenase), and copper proteins (nitrite and nitrous oxide reductases) as examples. These examples catalyze electron transfer reactions that include atom transfer, abstraction and insertion.
Pinheiro, C, Parola AJ, Pina F, Fonseca J, Freire C.
2008.
Electrocolorimetry of electrochromic materials on flexible ITO electrodes, 2008. Solar Energy Materials and Solar Cells. 92:980-985.
AbstractElectrochromic materials are characterized by their colour changes upon applied voltage. Colour can mean many things: a certain kind of light, its effect on the human eye, or the result of this effect in the mind of the viewer. Since the electrochromic materials are developed towards real life applications it is relevant to characterize them with the usual commercial colour standards. A colorimetric study of electrogenerated Prussian blue and electrogenerated polymers based on salen-type complexes of Cu(II), Ni(II) and Pd(H) deposited over transparent flexible electrodes of polyethylene terephthalate coated with indium tin oxide (PET/ITO electrodes) was carried out using the CIELAB coordinates. A cuvette with a designed adapter to allow potentiostatic control was placed on an integrating sphere installed in the sample compartment of a spectrophotometer to run the colorimetric measurements. The colour evolution in situ was measured through the transmittance of the films by potentiostatic control. Chronocoutometry/chronoabsorptometry was used to evaluate maximum coloration efficiencies for the coloration step: 184 (Pd), 161 (Cu) and 83 cm(2)/C (Ni) and for bleaching: 199 (Pd), 212 (Cu) and 173 cm(2)/C (Ni) of the Pd, Cu and Ni polymer films, respectively. The Prussian Blue/Prussian White states over the PET/ITO films were relatively reversible while the reversibility and stability of the polymers based on the metals salen-type complexes depends on the metal, Pd being the most stable. (c) 2008 Elsevier B.V. All rights reserved.
Grosso, AR, Martins S, Carmo-fonseca M.
2008.
The emerging role of splicing factors in cancer. EMBO Rep. 9:1087–1093., Number 11
AbstractRecent progress in global sequence and microarray data analysis has revealed the increasing complexity of the human transcriptome. Alternative splicing generates a huge diversity of transcript variants and disruption of splicing regulatory networks is emerging as an important contributor to various diseases, including cancer. Current efforts to establish the dynamic repertoire of transcripts that are generated in health and disease are showing that many cancer-associated alternative-splicing events occur in the absence of mutations in the affected genes. A growing body of evidence reveals changes in splicing-factor expression that correlate with cancer development, progression and response to therapy. Here, we discuss how recent links between cancer and altered expression of proteins implicated in splicing regulation are bringing the splicing machinery to the fore as a potential target for anticancer treatment.