Export 303 results:
Sort by: Author Title Type [ Year  (Desc)]
1982
Kruger, HJ, Huynh BH, Ljungdahl PO, Xavier AV, Dervartanian DV, Moura I, Peck, H. D. J, Teixeira M, Moura JJ, Legall J.  1982.  Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans, Dec 25. J Biol Chem. 257:14620-3., Number 24 AbstractWebsite

Hydrogenase from Desulfovibrio desulfuricans (ATCC No. 27774) grown in unenriched and in enriched 61Ni and 57Fe media has been purified to apparent homogeneity. Two fractions of enzymes with hydrogenase activity were separated and were termed hydrogenase I and hydrogenase II. they were shown to have similar molecular weights (77,600 for hydrogenase I and 75,500 for hydrogenase II), to be composed of two polypeptide chains, and to contain Ni and non-heme iron. Because of its higher specific activity (152 versus 97) hydrogenase II was selected for EPR and Mossbauer studies. As isolated, hydrogenase II exhibits an "isotropic" EPR signal at g = 2.02 and a rhombic EPR signal at g = 2.3, 2.2, and 2.0. Isotopic substitution of 61Ni proves that the rhombic signal is due to Ni. Combining the Mossbauer and EPR data, the isotropic g = 2.02 EPR signal was shown to originate from a 3Fe cluster which may have oxygenous or nitrogenous ligands. In addition, the Mossbauer data also revealed two [4Fe-4S]2+ clusters iun each molecule of hydrogenase II. The EPR and Mossbauer data of hydrogenase I were found to be identical to those of hydrogenase II, indicating that both enzymes have common metallic centers.

1980
Huynh, BH, Moura JJ, Moura I, Kent TA, Legall J, Xavier AV, Munck E.  1980.  Evidence for a three-iron center in a ferredoxin from Desulfovibrio gigas. Mossbauer and EPR studies, Apr 25. J Biol Chem. 255:3242-4., Number 8 AbstractWebsite

The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with Mossbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and Mossbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The Mossbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Munck, E. (1980) J. Biol. Chem. 255, 1793-1796).

Moura, I, Huynh B, Legall J, Xavier AV, Munck E.  1980.  EPR and Mossbauer studies of desulforedoxin from Desulfovibrio gigas. Ciênc. Biol. (Portugal). 5:199-201. Abstract
n/a
loading