Export 1532 results:
Sort by: Author Title Type [ Year  (Desc)]
Submitted
Carrera, GVSM, Jordao N, Santos MM, da Ponte MN, Branco LC.  Submitted.  {Reversible systems based on CO2, amino-acids and organic superbases}. {RSC ADVANCES}. {5}:{35564-35571}., Number {45} Abstract
n/a
Pikramenou, Z, Weinstein J, Pan Q, Lewis F, Bassani DM, Wuerthner F, Moucheron C, Slota M, Diaz-Moscoso A, Karlsson J, Basilio N, Adams D, Scandola F, Bohne C, Lemon C, Campagna S, Rohacova J, Ohashi K, Ploetz P-A, Monti F, Kelly JM, Keane P, Gibson E, Lemercier G, Ruggi A, Cucinotta F, Gust D, Bradberry S, Vos J, Pistolis G, Mauro M, Tuite E, De Cola L, Ceroni P, Maneiro M, Galoppini E, Gunnlaugsson T.  Submitted.  {Self-organization of photo-active nanostructures: general discussion}. {FARADAY DISCUSSIONS}. {185}:{529-548}. Abstract
n/a
Diniz, AM, Basilio N, Cruz H, Pina F, Parola JA.  Submitted.  {Spatiotemporal control over the co-conformational switching in pH-responsive flavylium-based multistate pseudorotaxanes}. {FARADAY DISCUSSIONS}. {185}:{361-379}. Abstract
n/a
Jordao, N, Cruz H, Branco A, Pinheiro C, Pina F, Branco LC.  Submitted.  {Switchable electrochromic devices based on disubstituted bipyridinium derivatives}. {RSC ADVANCES}. {5}:{27867-27873}., Number {35} Abstract
n/a
Basilio, N, Garnier T, Avo J, Danel M, Chassaing S, Pina F.  Submitted.  {Synthesis and multistate characterization of bis-flavylium dications - symmetric resorcinol- and phloroglucinol-type derivatives as stochastic systems}. {RSC ADVANCES}. {6}:{69698-69707}., Number {74} Abstract
n/a
Santos, L, Neto JP, Crespo A, Nunes D, Costa N, Fonseca IM, Barquinha P, Pereira L, Silva J, Martins R, Fortunato E.  Submitted.  {WO3 Nanoparticle-Based Conformable pH Sensor}. ACS APPLIED MATERIALS & INTERFACES. 6:12226–12234., Number 15 Abstract

\{pH is a vital physiological parameter that can be used for disease diagnosis and treatment as well as in monitoring other biological processes. Metal/metal oxide based pH sensors have several advantages regarding their reliability, miniaturization, and cost-effectiveness, which are critical characteristics for in vivo applications. In this work, WO3 nanoparticles were electrodeposited on flexible substrates over metal electrodes with a sensing area of 1 mm(2). These sensors show a sensitivity of -56.7 +/- 1.3 mV/pH, in a wide pH range of 9 to 5. A proof of concept is also demonstrated using a flexible reference electrode in solid electrolyte with a curved surface. A good balance between the performance parameters (sensitivity), the production costs, and simplicity of the sensors was accomplished, as required for wearable biomedical devices.\}

In Press
Machado, C, Machado A, Palomar T, Alves LC, Vilarigues M.  In Press.  Debitus grisailles for stained-glass conservation: an analytical study. Conservar Património.
2026
Fatima, A, Saif HM, Nascimento FX, Pawlowski S, Crespo JG.  2026.  Selective lithium recovery using bacterial cellulose acetate membranes: toward green recycling of spent Li-ion batteries. Journal of Membrane Science. 737:124776. AbstractWebsite

The global transition to electric vehicles and renewable energy systems has heightened the demand for lithium-ion batteries (LIBs), creating an urgent need for sustainable battery recycling methods to recover critical raw materials, including lithium. Lithium-selective cation-exchange polymeric membranes are one of the emerging options to achieve such lithium recycling. To make this change even greener, instead of using traditional fossil-origin polymers to produce membranes, this research employed bacterial cellulose acetate (BCA), a bio-derived and eco-friendly polymer. By adding 5 wt% N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI), an ionic liquid (IL) which is a plasticizer and lithium-ion conductor, and 20 wt% hydrogen manganese oxide (HMO), which is a lithium-selective inorganic filler, four BCA-based membranes (BCA, BCA-IL, BCA-HMO and BCA-IL-HMO) were prepared. The membranes were extensively characterized for their morphology, thermal stability, chemical, and mechanical properties. Subsequently, they were tested in diffusion cells (without applying any external driving force) for ionic conductivity, lithium selectivity, and lithium flux using binary salt mixtures and synthetic LIB leachate. The BCA-IL membrane outperformed other BCA-based membranes in terms of separation factors, achieving values of 10.50 (Li+/Mn2+), 11.75 (Li+/Ni2+), and 10.95 (Li+/Co2+) with a lithium flux of 0.12 mol m−2 h−1 when processing synthetic LIB leachate. Under the same conditions, the BCA-HMO membranes exhibited a higher lithium flux (0.51 mol m−2 h−1) but with lower separation factor values of 3.39 (Li+/Mn2+), 3.62 (Li+/Ni2+), and 3.36 (Li+/Co2+). The use of plant-derived cellulose acetate (CA) as an alternative to BCA was also assessed; however, despite promising ideal lithium selectivity values (for example, 112 for Li+/Ni2+ in the case of CA-HMO membrane), their conductivity was up to two orders of magnitude lower than that of BCA-based membranes. All these findings highlight the promising potential of BCA-based membranes for lithium recovery from lithium-ion battery leachates.

2025
Duarte, M, Carvalho AL, Ferreira MC, Caires B, Romão MJ, Prates JAM, Najmudin S, Bayer EA, Fontes CMGA, Bule P.  2025.  Tripartite binding mode of cohesin-dockerin complexes from Ruminococcus flavefaciens involving naturally truncated dockerins, 2025. 301(7):110325. AbstractWebsite

Polysaccharides in plant cell walls serve as a rich carbon and energy source, yet their structural complexity presents a barrier to efficient degradation. To address this, anaerobic microorganisms like R. flavefaciens have developed sophisticated multi-enzyme complexes known as cellulosomes, which enable the efficient breakdown of these recalcitrant polysaccharides. These complexes are assembled through high-affinity interactions between cohesin (Coh) modules in scaffoldin proteins and dockerin (Doc) modules in cellulosomal enzymes. R. flavefaciens FD-1 harbors one of the most intricate cellulosomes described to date, comprising over 200 Doc-containing proteins encoded in its genome. Despite substantial research on this cellulosome, the role of a group of truncated but functional dockerins, known as group-2 Docs, remains unclear. In this study, we present a detailed structural and binding analysis of a Coh-Doc complex involving the cohesin from the cell-anchoring scaffoldin ScaE and a group-2 Doc that bears only one of the two Ca+2-coordinating loops that characterise the canonical Docs. Our findings reveal a novel tripartite binding mechanism, in which the cohesin can simultaneously bind two distinct dockerin units in three alternative conformations. This discovery provides new insights into the modular versatility of the R. flavefaciens cellulosome and sheds light on the mechanisms that enhance its efficiency in polysaccharide degradation.

Mahmoodi, H, Basílio N, Branco PS, Lima JC, Pina F.  2025.  Calculation of the Absorption Spectra of Various Anthocyanin Species in an Acidic Medium Using Stopped-Flow Spectroscopy. J. Org. Chem.. (In press)
Phillips, AF, Ferreira LM, Branco PS, Lourenço A.  2025.  The Synthesis of Terpenes Via Enantioselective Organocatalysis. Asian J. Org. Chem.. :e202500229.
Saif, HM, Ferrández-Gómez B, Alves VD, Huertas RM, Alemany-Molina G, Viegas A, Morallón E, Cazorla-Amorós D, Crespo JG, Pawlowski S.  2025.  Activated carbons for flow electrode capacitive deionization (FCDI) – Morphological, electrochemical and rheological analysis. Desalination. 602:118638. AbstractWebsite

Flow electrode capacitive deionization (FCDI) is a desalination technology employing flowable carbon slurries to remove salt from an influent through the electro-sorption of ions at the surface of pores of activated carbon particles. This study presents an extensive morphological, electrochemical and rheological analysis of flow electrodes prepared using commercial (YP50F, YP80F, Norit, PAC) and lab-synthesized (KUA, PAC-OX) activated carbons. Simultaneous optimization of particle size, surface area, and surface chemistry of activated carbons is essential to enhance desalination efficiency in FCDI applications. The lab-made highly microporous activated carbon (KUA), prepared from a Spanish anthracite, exhibited a remarkably high specific surface area ( 2800 m2/g) but required first a particle size reduction through ball milling (from 56 μm to 12 μm) for the respective flow electrodes to achieve flowability. The slurry of milled fine KUA (designated as KUAF) shows a specific capacitance of 55 F/g, a 38-fold increase compared to its pristine form. The KUA-F flow electrode also achieved a maximum salt adsorption capacity of 185 mg/g, outperforming the leading commercial alternative (YP80F) by 26 %. The FCDI cell with the KUA-F flow electrode exhibited a desalination efficiency of 79 % at 15 wt% loading, surpassing YP80F by 29 %. In contrast, using PAC-OX (oxidized form of PAC), despite increasing oxygen functional groups and with relatively higher specific surface area, led only to a 2 % improvement in desalination performance, highlighting that oxidation alone at larger particle sizes and broader distribution is insufficient.

Saif, HM, Crespo JG, Pawlowski S.  2025.  Can 3D-printed flow electrode gaskets replace CNC-milled graphite current collectors in flow capacitive deionization? Desalination. 597:118362. AbstractWebsite

As billions of people suffer from water scarcity, finding sustainable water resources is imperative. Flow capacitive deionization (FCDI) is a highly promising desalination process that can produce clean water from saline streams such as brackish and seawater. Conventional FCDI systems employ Computerised Numerical Control (CNC)-milled graphite plates that serve as current collectors and flow electrode channels. However, they have drawbacks such as high manufacturing costs, waste generation, and the difficulty of producing complex geometries required for efficient flow electrode mixing. Here, we successfully demonstrate that 3D-printed flow electrode gaskets, made of non-conductive polyethylene terephthalate glycol (PET-G) or a carbon black-infused conductive polylactic acid (PLA), are viable alternatives to traditional graphite plates. In specific cases, the desalination and energy efficiency in FCDI cells with 3D-printed conductive gaskets were even 25 % and 10 % higher, respectively, compared to traditional CNC-milled current collectors. The transition to 3D printing offers notable benefits, such as the competence to fabricate complex designs that enhance internal mixing and charge percolation. This innovation represents a change of paradigm in the way FCDI cells should be designed and manufactured, using additive manufacturing, which represents an efficient, scalable, and cost-effective substitute for the conventional approach, contributing therefore for the advancement of FCDI desalination technology.

Gabirondo, E, Saif HM, Alves VD, Crespo JG, Tomé LC, Pawlowski S.  2025.  Deep eutectic solvent flow electrodes for high-voltage desalination via flow electrode capacitive deionisation. Desalination. 614:119218. AbstractWebsite

This study pioneers the application of deep eutectic solvents (DES) as electrolytes in flow electrode capacitive deionisation (FCDI) desalination systems, providing a novel and improved alternative to aqueous flow electrodes. The deep eutectic solvent, choline chloride-urea (ChCl-U), was selected for its wide electrochemical stability window, allowing voltages exceeding 1.23 V, which is the limit for aqueous flow electrodes. The effect of water doping on the viscosity and performance of the DES flow electrodes was also investigated. Cyclic voltammetry confirmed the electrochemical stability, while rheological and electrochemical impedance spectroscopy revealed that the addition of water reduced the viscosity and enhanced the conductivity of ChCl-U, making it suitable for use as an electrolyte in FCDI. Desalination experiments were performed within a potential range of up to 2.2 V. The ChCl-U flow electrode, containing 20 wt% water and 10 wt% activated carbon, achieved the best balance between desalination efficiency (83 %), desalination rate (0.17 mg/cm2.min), and effluent quality. Furthermore, 1H NMR analysis confirmed the absence of traces of the deep eutectic solvent in the dilute stream. The results highlight the potential of DES flow electrodes to enhance desalination processes by enabling higher operational voltages and improved performance, thereby paving the way for more efficient FCDI desalination systems.

Venu, M, Galinha CF, Crespo JG, Pawlowski S.  2025.  Development of cation-exchange membranes using solvent-free 3D printing: Towards tailored surface topographies. Separation and Purification Technology. 378:134567. AbstractWebsite

Electromembrane processes are employed in critical applications such as desalination, lithium recovery, and salinity gradient energy conversion. However, issues like fouling and concentration polarisation may limit their effectiveness. Profiled ion-exchange membranes offer several advantages over flat membranes, including improved fluid mixing, enhanced mass transfer, lower pressure drop (thus, lower energy consumption), and elimination of the spacer’s shadow effect. Nonetheless, their preparation is considerably more complex than that of flat membranes. In this study, we pioneered the use of solvent-free fused deposition modelling (FDM) 3D printing to fabricate flat and profiled (chevron and stripe) cation-exchange membranes (CEMs). The functionalisation of the 3D-printed membranes into CEMs was achieved via sulfonation. The optimised electrical resistance and permselectivity of the prepared membranes were 10.7 ± 4 Ωcm2 and 97.3 ± 4 %, respectively, after 14 h of sulfonation, closely matching commercial alternatives (e.g., FUMASEP FKB-PK-130, 9.7 ± 3 Ωcm2 and 96.7 ± 1 %). Sulfonation durations exceeding 14 h increased the membranes’ electrical resistance due to the formation of sulfone cross-bridges that do not participate in cations’ exchange. Since FDM 3D printing is a solvent-free and additive manufacturing method, it significantly reduces waste during membrane fabrication, resulting in an E-factor value of 1.5. Therefore, this work opens a path toward customisable, scalable, and greener CEM production for electrochemical applications ranging from the recovery of critical raw materials and water desalination to renewable energy conversion.

Saif, HM, Crespo JG, Pawlowski S.  2025.  How should flow electrode capacitive deionization (FCDI) be operated to achieve efficient desalination and scalability? Desalination. 606:118769. AbstractWebsite

Flow electrode capacitive deionization (FCDI) is an emerging desalination technology that utilises flowable electrodes and can be operated in diverse configuration modes. This study provides a systematic assessment of the three main configuration arrangements under a voltage range between 0.8 and 2.0 V: isolated closed-cycle (ICC), short-circuited closed-cycle (SCC), and single-cycle with separate concentrate chamber (SCSC). The ICC mode shows the highest specific energy consumption (up to 72.02 Wh/mol of NaCl at 2.0 V) and low operational stability manifested by extreme alteration of pH in the electrode compartments (anode compartment pH down to 2.17; cathode compartment pH up to 12.08), which leads to the need for frequent electrode regeneration or replacement. In comparison to the ICC mode, the SCC mode exhibited superior performance, with a 44.3 % increase in salt removal and up to 3.95 % higher current efficiency at 2.0 V, due to the regeneration of electrodes through short-circuiting, as it reduces the electrical resistance and minimises the side reactions. The SCSC mode emerged as the most stable and reliable among the three, with uniform current and conductivity profiles, as well as minimal pH fluctuations, which is critical to produce treated water within desired quality standards. These findings highlight the promising potential of SCSC mode as an optimal configuration for scalable, continuous and energy-efficient FCDI systems, providing a balanced solution for long-term desalination with reduced operational complexity and costs.

Purpura, G, Saif HM, Culcasi A, Pawlowski S, Crespo JG, Cipollina A.  2025.  Modelling selective lithium recovery from brines via membrane flow electrode capacitive de-ionization. Separation and Purification Technology. 364:132400. AbstractWebsite

The recent growing demand for lithium worldwide, led by the Li-ion battery market, has sparked research into alternative sources of this material. In this context, selective lithium recovery from concentrated brines represents a sustainable and economical alternative to lithium mining activities. In this work, we developed a mathematical model of the recently implemented Lithium Membrane Flow Electrode Capacitive De-Ionization (Li-MFCDI) process, used to selectively extract lithium from a synthetic geothermal brine. The model was validated against the available experimental data and was used to perform a comprehensive parametric analysis. The model predicts the effects of the applied voltage, flow rates, and the adopted membranes on the process performance. These findings highlight the importance of the membrane conductivity-selectivity trade-off for process productivity. Furthermore, this simulation tool will substantially contribute to the development of this novel technology.

Saif, HM, Gebretatios AG, Huertas RM, Crespo JG, Pawlowski S.  2025.  Single solvent synthesis of lithium-selective hydrogen manganese oxide (HMO)-based mixed matrix membranes. Green Chemical Engineering. AbstractWebsite

The rising lithium-ion battery market drives lithium demand and requires efficient and selective lithium recovery methods from aqueous sources. Membrane technologies can address environmental and inherent efficiency issues in conventional lithium extraction methods. This study presents the synthesis of novel lithium-selective mixed matrix membranes (MMMs) by integrating 0–30 wt% of a lithium selective filler named hydrogen manganese oxide (HMO) into a sulfonated polyethersulfone (SPES)-Nafion polymer matrix. The membranes were produced by casting and thoroughly examined to assess their chemical, physical, morphological, thermal, and mechanical characteristics. The transport of lithium across membranes was evaluated in diffusion and electro-diffusion studies. The membrane containing 20 wt% of HMO exhibited the highest ideal selectivity values, which were 1.05 for Li+/K+, 1.20 for Li+/Na+, and 13.36 for Li+/Mg2+; and more than 97% increase in lithium-ion conductivity when compared with the control membrane without HMO. In diffusion experiments, the binary separation factors for Li+/K+, Li+/Na+, and Li+/Mg2+ were 0.71, 1.52, and 11.83, respectively, while under electro-diffusion conditions, the corresponding values were 0.82, 1.55, and 9.88. Above 20 wt% of HMO, membranes lose their separation capacity as HMO aggregates inside the membrane structure. The higher selectivity of membranes towards Li+ in the presence of Mg2+ is due to magnesium's larger hydrated radius and higher hydration energy compared to lithium. Overall, the prepared membranes demonstrated a promising potential for green lithium recovery. This study facilitates the advancement of sustainable lithium-selective MMM synthesis.

Pereira, BA, Matos CT, Costa L, Ferreira LM, Crespo JG, Brazinha C.  2025.  Sustainable processing of microalgae protein: Design of biphasic partitioning systems based on natural deep eutectic solvents for C-phycocyanin recovery from model aqueous solutions. Separation and Purification Technology. 353:128510. AbstractWebsite

The development of sustainable protein sources is imperative for addressing the global challenge of food/feed security. Microalgae, which may be sustainably cultivated, are a promising source of proteins, gaining a progressive acceptance among consumers. The purpose of this work is to study the recovery of the protein C-phycocyanin from the microalga Arthrospira platensis (Spirulina), using a biphasic extraction system composed of sustainable solvents. The extraction system studied involves a feed phase, consisting of an aqueous salt solution and the target protein, and an extracting phase composed of a Natural Deep Eutectic Solvent (NADES) with affinity to the target protein. The performance of a specific NADES depends on the characteristics of the components of the NADES, in terms of its hydrophobicity/hydrophilicity balance, aiming the highest possible partitioning coefficient towards C-phycocyanin. It is also important to assure that the NADES phase selected presents a moderate viscosity and leads to a stable interface when in contact with the aqueous feed phase (i.e., presenting a measurable interfacial tension). In this work, after an extensive screening work of more than 71 combinations, the most overall performing combination is presented. This system shows a high partitioning coefficient of 29.4 ± 0.3 and an extraction yield of 99 % for C-phycocyanin (C-PC), demonstrating that the salting-out effect of the phosphate buffer and the hydrophobic character of NADES play a key role in this protein partitioning and recovery.

2024
Bravo, {AC}, Morão B, Luz A, Dourado R, Oliveira B, Guedes A, Moreira-Barbosa C, Fidalgo C, Mascarenhas-Lemos L, Costa-Santos {MP}, Maio R, Paulino J, {Viana Baptista} P, Fernandes {AR}, Cravo M.  2024.  Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma: A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples, oct. Cancers. 16, Number 20: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) incidence is rising, and prognosis remains poor due to late diagnosis and limited effective therapies. Currently, patients are treated based on TNM staging, without molecular tumor characterization. This study aimed to validate a technique that combines the amplification refractory mutation system (ARMS) with high-resolution melting analysis (HRMA) for detecting mutations in codon 12 of KRAS in tumor and plasma, and to assess its prognostic value. Methods: Prospective study including patients with newly diagnosed PDAC with tumor and plasma samples collected before treatment. Mutations in codon 12 of KRAS (G12D, G12V, G12C, and G12R) were detected using ARMS–HRMA and compared to Sanger sequencing (SS). Univariate and multivariate analyses were used to evaluate the prognostic significance of these mutations. Results: A total of 88 patients, 93% with ECOG-PS 0–1, 57% with resectable disease. ARMS–HRMA technique showed a higher sensitivity than SS, both in tumor and plasma (77% vs. 51%; 25 vs. 0%, respectively). The most frequent mutation was G12D (n = 32, 36%), followed by G12V (n = 22, 25%). On multivariate analysis, patients with G12D and/or G12C mutations, either in tumor or plasma, had lower PFS (HR 1.792, 95% CI 1.061–3.02

Vilela-Alves, G, Manuel RR, Pedrosa N, Cardoso Pereira IA, Romão MJ, Mota C.  2024.  {Structural and biochemical characterization of the M405S variant of ıt Desulfovibrio vulgaris} formate dehydrogenase}, May. Acta Crystallographica Section F. 80:98–106., Number 5 AbstractWebsite

Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO${\sb 2}$ to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of ıt Desulfovibrio vulgaris} formate dehydrogenase AB (ıt Dv}FdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine S${\sp {$δ$}}$ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO${\sb 2}$ reduction, together with an increased sensitivity to oxygen inactivation.

Malta, G, Pina J, Lima CJ, Parola JA, Branco PS.  2024.  Acenaphthylene-Based Chromophores for Dye-Sensitized Solar Cells: Synthesis, Spectroscopic Properties, and Theoretical Calculations, MAR 15. ACS OMEGA. 9:14627-14637., Number 12 Abstract
n/a
Ribeiro, DO, Bonnardel F, Palma AS, Carvalho ALM, Perez S.  2024.  CBMcarb-DB: interface of the three-dimensional landscape of carbohydrate-binding modules, 2024/06/26. Carbohydrate Chemistry: Chemical and Biological Approaches Volume 46. 46(Pilar Rauter, Amélia, Queneau, Yves, Palma, Angelina Sá, Eds.).: Royal Society of Chemistry Abstract

Carbohydrate-binding-modules (CBMs) are discrete auxiliary protein modules with a non-catalytic carbohydrate-binding function and that exhibit a great diversity of binding specificities. CBMcarb-DB is a curated database that classifies the three-dimensional structures of CBM–carbohydrate complexes determined by single-crystal X-ray diffraction methods and solution NMR spectroscopy. We designed the database architecture and the navigation tools to query the database with the Protein Data Bank (PDB), UniProtKB, and GlyTouCan (universal glycan repository) identifiers. Special attention was devoted to describing the bound glycans using simple graphical representation and numerical format for cross-referencing to other glycosciences and functional data databases. CBMcarb-DB provides detailed information on CBMs and their bound oligosaccharides and features their interactions using several open-access applications. We also describe how the curated information provided by CBMcarb-DB can be integrated with AI algorithms of 3D structure prediction, facilitating structure–function studies. Also in this chapter, we discuss the exciting convergence of CBMcarb-DB with the glycan array repository, which serves as a valuable resource for investigating the specific binding interactions between glycans and various biomolecular targets. The interaction of the two fields represents a significant milestone in glycosciences. CBMcarb-DB is freely available at https://cbmdb.glycopedia.eu/ and https://cbmcarb.webhost.fct.unl.pt.

Oliveira, AR, Mota C, Vilela-Alves G, Manuel RR, Pedrosa N, Fourmond V, Klymanska K, Léger C, Guigliarelli B, Romão MJ, Cardoso Pereira IA.  2024.  An allosteric redox switch involved in oxygen protection in a CO2 reductase, 2024. Nat Chem Biol. 20(1):111-119. AbstractWebsite

Metal-dependent formate dehydrogenases reduce CO2 with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O2 exposure.

Vilela-Alves, G, Manuel RR, Viegas A, Carpentier P, Biaso F, Guigliarelli B, Pereira IC, Romão MJ, Mota C.  2024.  Substrate-dependent oxidative inactivation of a W-dependent formate dehydrogenase involving selenocysteine displacement, 2024. Chemical Science. :-.: The Royal Society of Chemistry AbstractWebsite

Metal-dependent formate dehydrogenases are very promising targets for enzyme optimization and design of bio-inspired catalysts for CO2 reduction, towards innovative strategies for climate change mitigation. For effective application of these enzymes, the catalytic mechanism must be better understood, and the molecular determinants clarified. Despite numerous studies, several doubts persist, namely regarding the role played by the possible dissociation of the SeCys ligand from the Mo/W active site. Additionally, the oxygen sensitivity of these enzymes must also be understood as it poses an important obstacle for biotechnological applications. Here we present a combined biochemical, spectroscopic, and structural characterization of Desulfovibrio vulgaris FdhAB (DvFdhAB) when exposed to oxygen in the presence of a substrate (formate or CO2). This study reveals that O2 inactivation is promoted by the presence of either substrate and involves forming a different species in the active site, captured in the crystal structures, where the SeCys ligand is displaced from tungsten coordination and replaced by a dioxygen or peroxide molecule. This form was reproducibly obtained and supports the conclusion that, although W-DvFdhAB can catalyse the oxidation of formate in the presence of oxygen for some minutes, it gets irreversibly inactivated after prolonged O2 exposure in the presence of either substrate.