Araújo, A, Barros R, Mateus T, Gaspar D, Neves N, Vicente A, Filonovich SA, Barquinha P, Fortunato E, Ferraria AM, do Rego ABM, Bicho A, Águas H, Martins R.
2013.
Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells. Science and Technology of Advanced Materials. 14(4)
Seixas, JD, Mukhopadhyay A, Santos-Silva T, Otterbein LE, Gallo DJ, Rodrigues SS, Guerreiro BH, Goncalves AML, Penacho N, Marques AR, Coelho AC, Reis PM, Romao MJ, Romao CC.
2013.
Characterization of a versatile organometallic pro-drug (CORM) for experimental CO based therapeutics. Dalton Transactions. 42:5985-5998., Number 17
Abstractn/a
Neves, CS, Granadeiro CM, Cunha-Silva L, Ananias D, Gago S, Feio G, Carvalho PA, Eaton P, Balula SS, Pereira E.
2013.
Europium Polyoxometalates Encapsulated in Silica Nanoparticles Characterization and Photoluminescence Studies. European Journal of Inorganic Chemistry. :2877-2886., Number 16
Abstractn/a
Neves, CS, Granadeiro CM, Cunha-Silva L, Ananias D, Gago S, Feio G, Carvalho PA, Eaton P, Balula SS, Pereira E.
2013.
Europium Polyoxometalates Encapsulated in Silica Nanoparticles Characterization and Photoluminescence Studies. European Journal of Inorganic Chemistry. :2877-2886., Number 16
AbstractThe incorporation of europium polyoxometalates into silica nanoparticles can lead to a biocompatible nanomaterial with luminescent properties suitable for applications in biosensors, biological probes, and imaging. Keggin-type europium polyoxometalates Eu(PW11)x (x = 1 and 2) with different europium coordination environments were prepared by using simple methodologies and no expensive reactants. These luminescent compounds were then encapsulated into silica nanoparticles for the first time through the water-in-oil microemulsion methodology with a nonionic surfactant. The europium polyoxometalates and the nanoparticles were characterized by using several techniques [FTIR, FT-Raman, 31P magic angle spinning (MAS) NMR, and TEM/energy-dispersive X-ray spectroscopy (TEM-EDS), AFM, dynamic light scattering (DLS), and inductively coupled plasma MS (ICP-MS) analysis]. The stability of the material and the integrity of the europium compounds incorporated were also examined. Furthermore, the photoluminescence properties of the Eu(PW11)x@SiO2 nanomaterials were evaluated and compared with those of the free europium polyoxometalates. The silica surface of the most stable nanoparticles was successfully functionalized with appropriate organosilanes to enable the covalent binding of oligonucleotides.
Mehtab, S, Goncalves G, Roy S, Tomaz AI, Santos-Silva T, Santos MFA, Romao MJ, Jakusch T, Kiss T, Pessoa JC.
2013.
Interaction of vanadium(IV) with human serum apo-transferrin. Journal of Inorganic Biochemistry. 121:187-195.
Abstractn/a
Gomes, L, Marques A, Branco A, Araujo J, Simoes M, Cardoso S, Silva F, Henriques I, Laia CAT, Costa C.
2013.
IZO deposition by RF and DC sputtering on paper and application on flexible electrochromic devices. Displays. 34:326-333., Number 4
Abstractn/a
Gawande, MB, Rathi AK, Branco PS, Potewar TM, Velhinho A, Nogueira ID, Tolstogouzov A, Ghumman ACA, Teodoro OMND.
2013.
Nano-MgO-ZrO2 mixed metal oxides: characterization by SIMS and application in the reduction of carbonyl compounds and in multicomponent reactions. RSC ADVANCES. 3:3611-3617., Number 11
Abstractn/a
Verma, AK, Goyal A, Freire F, Bule P, Venditto I, Bras JLA, Santos H, Cardoso V, Bonifacio C, Thompson A, Romao MJ, Prates JAM, Ferreira LMA, Fontes CMGA, Najmudin S.
2013.
Overexpression, crystallization and preliminary X-ray crystallographic analysis of glucuronoxylan xylanohydrolase (Xyn30A) from Clostridium thermocellum. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 69:1440-1442.
Abstractn/a
Szabo, CI, Amaro P, Guerra M, Schlesser S, Gumberidze A, Santos JP, Indelicato P.
2013.
Reference free, high-precision measurements of transition energies in few electron argon ions. AIP Conf. Proc.. 1525(
McDaniel, Floyd D, Doyle, Barney L, Glass, Gary A, Wang, Yongqiang, Eds.).:68-72., Number 1: AIP
AbstractThe use of a vacuum double crystal spectrometer, coupled to an electron-cyclotron resonance ion source (ECRIS), allows to measure low-energy x-ray transitions energies in highly-charged ions with accuracies of the order of a few parts per million. We have used this installation to measure the 1s2p 1 P1 - 1s2 1 S0 diagram line and the 1s2s 3 S1 - 1s2 1 S0 forbidden M1 transition energies in helium-like argon, the 1s2s2p 2 P j 1s2 2s 2 S1/2 transitions in lithium-like argon and the 1s2s2 2p 1 P1 - 1s2 2s2 1 S0 transition in beryllium-like argon. These transition measurements have accuracies between 2 and 4 ppm depending on the line intensity. Thanks to the excellent agreement between the simulations and the measurements, we were also able to measure the transition width of all the allowed transitions. The results are compared to recent QED and relativistic many-body calculations.
Carvalho, A, Goncalves MC, Martins MB, Meixedo D, Feio G.
2013.
Relaxivities of magnetoliposomes: the effect of cholesterol. Magn Reson Imaging. 31:610-2., Number 4
AbstractWe present relaxivities measurements for both the longitudinal and transverse relaxations of two types of liposomes loaded with ultra small superparamagnetic iron oxide nanoparticles. The magnetoliposome systems presented are soybean phosphatidylcholine liposomes, with and without cholesterol, in the phospholipid bilayer with different molar ratios lipid:cholesterol. In fact, cholesterol is needed to obtain stable liposomes for intravenous administration. The longitudinal and transverse relaxivities were measured with a NMR spectrometer in a 7T magnetic field. For the studied concentrations, the liposomes show a negligible effect on the longitudinal relaxation time T1 of the medium, but they are very efficient on decreasing the transverse relaxation time T2, the behaviour one expects for a negative CA. We observed a lower transverse relaxivity for the magnetoliposome nanosystem with cholesterol, which strongly decreases with the cholesterol content in the liposome bilayer.