Rivas, MG, Mota CS, Pauleta SR, Carepo MS, Folgosa F, Andrade SL, Fauque G, Pereira AS, Tavares P, Calvete JJ, Moura I, Moura JJ.
2009.
Isolation and characterization of a new Cu-Fe protein from Desulfovibrio aminophilus DSM12254, Oct. J Inorg Biochem. 103:1314-22., Number 10
AbstractThe isolation and characterization of a new metalloprotein containing Cu and Fe atoms is reported. The as-isolated Cu-Fe protein shows an UV-visible spectrum with absorption bands at 320 nm, 409 nm and 615 nm. Molecular mass of the native protein along with denaturating electrophoresis and mass spectrometry data show that this protein is a multimer consisting of 14+/-1 subunits of 15254.3+/-7.6 Da. Mossbauer spectroscopy data of the as-isolated Cu-Fe protein is consistent with the presence of [2Fe-2S](2+) centers. Data interpretation of the dithionite reduced protein suggest that the metallic cluster could be constituted by two ferromagnetically coupled [2Fe-2S](+) spin delocalized pairs. The biochemical properties of the Cu-Fe protein are similar to the recently reported molybdenum resistance associated protein from Desulfovibrio, D. alaskensis. Furthermore, a BLAST search from the DNA deduced amino acid sequence shows that the Cu-Fe protein has homology with proteins annotated as zinc resistance associated proteins from Desulfovibrio, D. alaskensis, D. vulgaris Hildenborough, D. piger ATCC 29098. These facts suggest a possible role of the Cu-Fe protein in metal tolerance.
Rivas, MG, Mota CS, Pauleta SR, Carepo MSP, Folgosa F, Andrade SLA, Fauque G, Pereira AS, Tavares P, Calvete JJ, Moura I, Moura JJG.
2009.
Isolation and characterization of a new Cu-Fe protein from Desulfovibrio aminophilus DSM12254, Oct. Journal Of Inorganic Biochemistry. {103}:{1314-1322}., Number {10, SI}
AbstractThe isolation and characterization of a new metalloprotein containing Cu and Fe atoms is reported. The as-isolated Cu-Fe protein shows an UV-visible spectrum with absorption bands at 320 nm, 409 nm and 615 nm. Molecular mass of the native protein along with denaturating electrophoresis and mass spectrometry data show that this protein is a multimer consisting of 14 +/- 1 subunits of 15254.3 +/- 7.6 Da. Mossbauer spectroscopy data of the as-isolated Cu-Fe protein is consistent with the presence of [2Fe-2S](2+) centers. Data interpretation of the dithionite reduced protein suggest that the metallic cluster could be constituted by two ferromagnetically coupled [2Fe-2S](+) spin delocalized pairs. The biochemical properties of the Cu-Fe protein are similar to the recently reported molybdenum resistance associated protein from Desulfovibrio, D. alaskensis. Further-more, a BLAST search from the DNA deduced amino acid sequence shows that the Cu-Fe protein has homology with proteins annotated as zinc resistance associated proteins from Desulfovibrio, D. alaskensis, D. vulgaris Hildenborough, D. piger ATCC 29098. These facts suggest a possible role of the Cu-Fe protein in metal tolerance. (C) 2009 Published by Elsevier Inc.
Conrath, K, Pereira AS, Martins CE, Timoteo CG, Tavares P, Spinelli S, Kinne J, Flaudrops C, Cambillau C, Muyldermans S, Moura I, Moura JJ, Tegoni M, Desmyter A.
2009.
Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase, Mar. Protein Sci. 18:619-28., Number 3
AbstractNitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.
Santos-Silva, T, Ferroni F, Thapper A, Marangon J, Gonzalez PJ, Rizzi AC, Moura I, Moura JJ, Romao MJ, Brondino CD.
2009.
Kinetic, structural, and EPR studies reveal that aldehyde oxidoreductase from Desulfovibrio gigas does not need a sulfido ligand for catalysis and give evidence for a direct Mo-C interaction in a biological system, Jun 17. J Am Chem Soc. 131:7990-8., Number 23
AbstractAldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a member of the xanthine oxidase (XO) family of mononuclear Mo-enzymes that catalyzes the oxidation of aldehydes to carboxylic acids. The molybdenum site in the enzymes of the XO family shows a distorted square pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. We report here steady-state kinetic studies of DgAOR with the inhibitors cyanide, ethylene glycol, glycerol, and arsenite, together with crystallographic and EPR studies of the enzyme after reaction with the two alcohols. In contrast to what has been observed in other members of the XO family, cyanide, ethylene glycol, and glycerol are reversible inhibitors of DgAOR. Kinetic data with both cyanide and samples prepared from single crystals confirm that DgAOR does not need a sulfido ligand for catalysis and confirm the absence of this ligand in the coordination sphere of the molybdenum atom in the active enzyme. Addition of ethylene glycol and glycerol to dithionite-reduced DgAOR yields rhombic Mo(V) EPR signals, suggesting that the nearly square pyramidal coordination of the active enzyme is distorted upon alcohol inhibition. This is in agreement with the X-ray structure of the ethylene glycol and glycerol-inhibited enzyme, where the catalytically labile OH/OH(2) ligand is lost and both alcohols coordinate the Mo site in a eta(2) fashion. The two adducts present a direct interaction between the molybdenum and one of the carbon atoms of the alcohol moiety, which constitutes the first structural evidence for such a bond in a biological system.
Costa, VM, Ferreira LM, Branco PS, Carvalho F, Bastos ML, Carvalho RA, Carvalho M, Remiao F.
2009.
Cross-Functioning between the Extraneuronal Monoamine Transporter and Multidrug Resistance Protein 1 in the Uptake of Adrenaline and Export of 5-(Glutathion-S-yl)adrenaline in Rat Cardiomyocytes, JAN. CHEMICAL RESEARCH IN TOXICOLOGY. 22:129-135., Number 1
Abstractn/a
Conrath, K, Pereira AS, Martins CE, Timoteo CG, Tavares P, Spinelli S, Kinne J, Flaudrops C, Cambillau C, Muyldermans S, Moura I, Moura JJG, Tegoni M, Desmyter A.
2009.
Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase, Apr. PROTEIN SCIENCE. {18}:{619-628}., Number {3}
AbstractNitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies (TM)). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.
Roque, ACA, Bispo S, Pinheiro ARN, Antunes JMA, Gonçalves D, Ferreira HA.
2009.
Antibody immobilization on magnetic particles. Journal of Molecular Recognition. 22:77–82., Number 2
AbstractMagnetic particles {(MNPs)} offer attractive possibilities in biotechnology. {MNPs} can get close to a target biological entity, as their controllable sizes range from a few nanometres up to tens of nanometres, and their surface can be modified to add affinity and specificity towards desired molecules. Additionally, they can be manipulated by an external magnetic field gradient. In this work, the study of ferric oxide {(Fe3O4)} {MNPs} with different coating agents was conducted, particularly in terms of strategies for antibody attachment at the surfaces (covalent and physical adsorption) and the effects of blocking buffer composition and incubation times on the specific and non-specific interactions observed. The considered biological model system consisted of a coating antibody (goat {IgG)}, bovine serum albumin {(BSA)} as blocking agent, and a complementary antibody labelled with {FITC} (anti-goat {IgG).} The detection of antibody binding was followed by fluorescence microscopy and the intensity of the signals quantified. The ratio between the mean grey values of negative and positive controls, as well as the maximum intensity attainable in positive controls, were considered in the evaluation of the assays efficiency. The covalent immobilization of the coating antibody was more successful as opposed to protein adsorption. For covalent immobilization, silica-coated {MNPs}, a 5% (w/v) concentration of {BSA} in the blocking buffer and incubation times of 1 h produced the best results in terms of assay sensitivity. However, when conducting the assay for incubation periods of 10 min, the fluorescence signal was reduced by 44% but the assay specificity was maintained.
Ribeiro, MP, Espiga A, Silva D, Baptista P, Henriques J, Ferreira C, Silva JC, Borges JP, Pires E, Chaves P, Correia IJ.
2009.
Development of a new chitosan hydrogel for wound dressing. Wound repair and regeneration. 17(6):817–824., Number 6: Blackwell Publishing Inc
AbstractWound healing is a complex process involving an integrated response by many different cell types and growth factors in order to achieve rapid restoration of skin architecture and function. The present study evaluated the applicability of a chitosan hydrogel (CH) as a wound dressing. Scanning electron microscopy analysis was used to characterize CH morphology. Fibroblast cells isolated from rat skin were used to assess the cytotoxicity of the hydrogel. CH was able to promote cell adhesion and proliferation. Cell viability studies showed that the hydrogel and its degradation by-products are noncytotoxic. The evaluation of the applicability of CH in the treatment of dermal burns in Wistar rats was performed by induction of full-thickness transcutaneous dermal wounds. Wound healing was monitored through macroscopic and histological analysis. From macroscopic analysis, the wound beds of the animals treated with CH were considerably smaller than those of the controls. Histological analysis revealed lack of a reactive or a granulomatous inflammatory reaction in skin lesions with CH and the absence of pathological abnormalities in the organs obtained by necropsy, which supported the local and systemic histocompatibility of the biomaterial. The present results suggest that this biomaterial may aid the re-establishment of skin architecture.
Almeida, PL, Kundu S, Borges JP, Godinho MH, Figueirinhas JL.
2009.
Electro-optical light scattering shutter using electrospun cellulose-based nano-and microfibers. Applied Physics Letters. 95(4):043501., Number 4: AIP Publishing
AbstractElectrospun cellulose-based nano and microfibers and a nematic liquid crystal are used to assemble an electro-optical (EO) light-scattering device that shows enhanced characteristics when compared to similar devices. Based on the controlled scattering of light in the composite system, the device can achieve light transmission coefficients tunable from 1% up to around 89%. Simulation of the EO behavior indicates that the roughness of the polymer-liquid crystal interface is crucial for the optical performance of the device.
Fonseca, BM, Saraiva IH, Paquete CM, Soares CM, Pacheco I, Salgueiro CA, Louro RO.
2009.
The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes. Journal of Biological Inorganic Chemistry. 14(3):375-385.
AbstractBacteria of the genus Shewanella contain an abundant small tetraheme cytochrome in their periplasm when growing anaerobically. Data collected for the protein isolated from S. oneidensis MR-1 and S. frigidimarina indicate differences in the order of oxidation of the hemes. A detailed thermodynamic characterization of the cytochrome from S. oneidensis MR-1 in the physiological pH range was performed, with data collected in the pH range 5.5-9.0 from NMR experiments using partially oxidized samples and from redox titrations followed by visible spectroscopy. These data allow the parsing of the redox and redox-protonation interactions that occur during the titration of hemes. The results show that electrostatic effects dominate the heme-heme interactions, in agreement with modest redox-linked structural modifications, and protonation has a considerable influence on the redox properties of the hemes in the physiological pH range. Theoretical calculations using the oxidized and reduced structures of this protein reveal that the bulk redox-Bohr effect arises from the aggregate fractional titration of several of the heme propionates. This detailed characterization of the thermodynamic properties of the cytochrome shows that only a few of the multiple microscopic redox states that the protein can access are significantly populated at physiological pH. On this basis a functional pathway for the redox activity of the small tetraheme cytochrome from S. oneidensis MR-1 is proposed, where reduction and protonation are thermodynamically coupled in the physiological range. The differences between the small tetraheme cytochromes from the two organisms are discussed in the context of their biological role.
Morgado, L, Fernandes AP, Londer YY, Pokkuluri PR, Schiffer M, Salgueiro CA.
2009.
Thermodynamic characterization of the redox centres in a representative domain of a novel c-type multihaem cytochrome. Biochemical Journal. 420(3):485-492.
AbstractMultihaem cytochromes that could form protein “nanowires” were identified in the Geobacter sulfurreducens genome, and represent a new type of multihaem cytochrome. The sequences of these proteins, two with 12 haems (GSU1996, GSU0592) and one with 27 haems (GSU2210), suggest that they are formed with domains homologous to the trihaem cytochrome c7. Although all three haems have bis-His co-ordination in cytochromes c7, in each domain of the above polymers, the haem equivalent to haem IV has His-Met co-ordination. We previously determined the structure and measured the macroscopic redox potential of one representative domain (domain C) of a dodecahaem cytochrome (GSU1996). In the present study, the microscopic redox properties of the individual haem groups of domain C were determined using NMR and UV–visible spectroscopies. The reduction potentials of the haems for the fully reduced and protonated protein are different from each other (haem I, −106 mV; haem III, −136 mV; and haem IV, −125 mV) and are strongly modulated by redox interactions. This result is rather surprising since the His-Met co-ordinated haem IV does not have the highest potential as was expected. The polypeptide environment of each haem group and the strong haem pairwise redox interactions must play a dominant role in controlling the individual haem potentials. The strong redox interactions between the haems extend the range of their operating potentials at physiological pH (haem I, −71 mV, haem III, −146 mV and haem IV, −110 mV). Such a modulation in haem potentials is likely to have a functional significance in the metabolism of G. sulfurreducens.
Neves, P, Gago S, Pereira CCL, Figueiredo S, Lemos A, Lopes AD, Goncalves IS, Pillinger M, Silva CM, Valente AA.
2009.
Catalytic Epoxidation and Sulfoxidation Activity of a Dioxomolybdenum(VI) Complex Bearing a Chiral Tetradentate Oxazoline Ligand. Catalysis Letters. 132:94-103., Number 1-2
Abstractn/a
Figueirinhas, JL, Cruz C, Feio G, Mehl GH.
2009.
Collective Modes and Biaxial Ordering Observed by Deuterium NMR in the Nematic Phases of an Organosiloxane Tetrapode. Molecular Crystals and Liquid Crystals. 510:158-174.
AbstractCalculations of deuterium NMR spectra were performed using a model of slow motions based on the collective modes present in liquid crystalline systems and evaluated within the Landau de Gennes free energy expansion on the order parameter tensor. Simulations obtained with this model are applied to the case of deuterium NMR spectra collected in static and rotating samples of organosiloxane tetrapodes exhibiting uniaxial and biaxial nematic phases. The analysis of the slow motions influence on deuterium NMR spectra shows that molecular motions within a time-scale of the order of magnitude of NMR observation times are particularly effective on modulating the NMR line-shape in the case of the liquid crystalline system investigated.
Monteiro, B, Balula SS, Gago S, Grosso C, Figueiredo S, Lopes AD, Valente AA, Pillinger M, Lourenco JP, Goncalves IS.
2009.
Comparison of liquid-phase olefin epoxidation catalysed by dichlorobis-(dimethylformamide)dioxomolybdenum(VI) in homogeneous phase and grafted onto MCM-41. Journal of Molecular Catalysis a-Chemical. 297:110-117., Number 2
Abstractn/a
Feio, G, Figueirinhas JL, Tajbakhsh AR, Terentjev EM.
2009.
Deuterium NMR study of mobility and fluctuations in nematic and isotropic elastomers. J Chem Phys. 131:074903., Number 7
AbstractOrientational ordering in polydomain nematic and isotropic elastomers with identical polysiloxane backbone and different deuterium-labeled side groups is studied by D-NMR. In the nematic elastomer the orientational order parameter grows in a critical fashion on crossing the I-N transition implying a continuous phase transition driven by critical fluctuations of local director. The orientational (nematic) ordering occurs on the background of the polymer dynamics exhibited by the backbone, which is similar in the nematic and the analogous isotropic elastomers. The temperature dependence of NMR linewidths is compatible with a Vogel-Fulcher glassy dynamics.
Santos-Silva, T, Ferroni F, Thapper A, Marangon J, Gonzalez PJ, Rizzi AC, Moura I, Moura JJG, Romao MJ, Brondino CD.
2009.
Kinetic, Structural, and EPR Studies Reveal That Aldehyde Oxidoreductase from Desulfovibrio gigas Does Not Need a Sulfido Ligand for Catalysis and Give Evidence for a Direct Mo-C Interaction in a Biological System. Journal of the American Chemical Society. 131:7990-7998., Number 23
Abstractn/a