Leydet, Y, Batat P, Jonusauskas G, Denisov S, Lima JC, Parola AJ, McClenaghan ND, Pina F.
2013.
Impact of Water on the Cis-Trans Photoisomerization of Hydroxychalcones, 2013. Journal of Physical Chemistry A. 117:4167-4173.
AbstractThe photochromism of a 2-hydroxychalcone has been studied in CH3CN and H2O/CH3OH (1/1, v/v), as well as in analogous deuterated solvents using steady-state (UV-vis absorption, H-1 and C-13 NMR) and time-resolved (ultrafast transient absorption and nanosecond flow flash photolysis) spectroscopies. Whereas the irradiation of trans-chalcone (Ct) under neutral pH conditions leads to the formation of the same final chromene derivative (B) in both media, two distinct photochemical mechanisms are proposed in agreement with thermodynamic and kinetic properties of the chemical reaction network at the ground state. Following light excitation, the first steps are identical in acetonitrile and aqueous solution: the Franck-Condon excited state rapidly populates the trans-chalcone singlet excited state (1)Ct* (LE), which evolves into a twisted state P-1*. This excited state is directly responsible for the photochemistry in acetonitrile in the nanosecond time scale (16 ns) leading to the formation of cis-chalcone (Cc) through a simple isomerization process. The resulting cis-chalcone evolves into the chromene B through a tautomerization process in the ground state (tau= 10 ms). Unlike in acetonitrile, in H2O/CH3OH (1/1, v/v), the P* state becomes unstable and evolves into a new state attributed to the tautomer (1)Q*. This state directly evolves into B in one photochemical step through a consecutive ultrafast tautomerization process followed by electrocyclization. This last case represents a new hypothesis in the photochromism of 2-hydroxychalcone derivatives.
Petrov, V, Diniz AM, Cunha-Silva L, Parola AJ, Pina F.
2013.
Kinetic and thermodynamic study of 2 '-hydroxy-8-methoxyflavylium. Reaction network interconverting flavylium cation and flavanone, 2013. Rsc Advances. 3:10786-10794.
Abstract2'-Hydroxyflavylium and 2'-hydroxyflavanone derivatives can be interconverted by a precise sequence of pH jumps, through the respective intermediate (mono) ionized trans-chalcones. In acidic and neutral media, the well known network of chemical reactions involving flavylium cation, quinoidal base, hemiketal, and cis and trans chalcones is established. In the pH range 8 < pH < 10, the chalcone (Ct) deprotonates and evolves to the formation of a flavanone (F). At higher pH values, the di-ionized trans-chalcone is the stable species, formed from the flavylium cation. Acidification of the di-ionized trans-chalcone gives the flavylium cation or the flavanone, via the mono-ionized trans-chalcone, respectively at pH < 1 and pH approximate to 9. In contrast with the chalcones, the flavanone once formed is stable even in acidic media. However, under strongly basic conditions, it leads back to the di-ionized trans-chalcone, the most stable species at more basic pH values, and the reactions leading to Ct(-), F, Ct(2-), Ct(-), constitute a one direction cycle for interconversion of these species.
Calogero, G, Sinopoli A, Citro I, Di Marco G, Petrov V, Diniz AM, Parola AJ, Pina F.
2013.
Synthetic analogues of anthocyanins as sensitizers for dye-sensitized solar cells, 2013. Photochemical & Photobiological Sciences. 12:883-894.
AbstractSeven flavylium salt dyes were employed for the first time as sensitizers for dye-sensitized solar cells (DSSCs). The theoretical and experimental wavelengths of the maximum absorbances, the HOMO and LUMO energy levels, the coefficients, the oscillator strengths and the dipole moments are calculated for these synthetic dyes. The introduction of a donor group in the flavylium molecular structure was investigated. Photophysical and photoelectrochemical measurements showed that some of these synthetic analogues of anthocyanins are very promising for DSSC applications. The best performance was obtained by a DSSC based on the novel compound 7-(N,N-diethylamino)-3',4'-dihydroxyflavylium which produced a 2.15% solar energy-to-electricity conversion efficiency, under AM 1.5 irradiation (100 mW cm(-2)) with a short-circuit current density (J(sc)) of 12.0 mA cm(-2), a fill factor of 0.5 and an open-circuit voltage (V-oc) of 0.355 V; its incident photocurrent efficiency of 51% at the peak of the visible absorption band of the dye is remarkable. Our results demonstrated that the substitution of a hydroxylic group with a diethylamine unit in position 7 of ring A of the flavylium backbone expanded the pi-conjugation in the dye and thus resulted in a higher absorption in the visible region and is advantageous for effective electron injection from the dye into the conduction band of TiO2.
dos Santos, R, Rocha Â, Matias A, Duarte C, Sá-Nogueira I, Lourenço N, Borges JP.
2013.
Development of antimicrobial Ion Jelly fibers. RSC Advances. 3(46):24400-24405.
AbstractWe report a method to obtain electrospun fibers based on ionic liquids and gelatin, exhibiting antimicrobial properties.
Dantas, JM, Tomaz DM, Morgado L, Salgueiro CA.
2013.
Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens. FEBS Letters. 587(16):2662-2668.
AbstractThe cytochrome PccH from Geobacter sulfurreducens (Gs) plays a crucial role in current-consuming fumarate-reducing biofilms. Deletion of pccH gene inhibited completely electron transfer from electrodes toward Gs cells. The pccH gene was cloned and the protein heterologously expressed in Escherichia coli. Complementary biophysical techniques including CD, UV-visible and NMR spectroscopy were used to characterize PccH. This cytochrome contains one low-spin c-type heme with His-Met axial coordination and unusual low-reduction potential. This reduction potential is pH-dependent, within the Gs physiological pH range, and is discussed within the context of the electron transfer mechanisms from electrodes to Gs cells.