Export 718 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Dantas, JM, Campelo LM, Duke NEC, Salgueiro CA, Pokkuluri PR.  2015.  The structure of PccH from Geobacter sulfurreducens: a novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode. FEBS J. 282(11):2215-2231. AbstractWebsite

The structure of cytochrome c (GSU3274) designated as PccH from Geobacter sulfurreducens was determined at a resolution of 2.0 Å. PccH is a small (15 kDa) cytochrome containing one c-type heme, found to be essential for the growth of G. sulfurreducens with respect to accepting electrons from graphite electrodes poised at -300 mV versus standard hydrogen electrode. with fumarate as the terminal electron acceptor. The structure of PccH is unique among the monoheme cytochromes described to date. The structural fold of PccH can be described as forming two lobes with the heme sandwiched in a cleft between the two lobes. In addition, PccH has a low reduction potential of -24 mV at pH 7, which is unusual for monoheme cytochromes. Based on difference in structure, together with sequence phylogenetic analysis, we propose that PccH can be regarded as a first characterized example of a new subclass of class I monoheme cytochromes. The low reduction potential of PccH may enable the protein to be redox active at the typically negative potential ranges encountered by G. sulfurreducens. Because PccH is predicted to be located in the periplasm of this bacterium, it could not be involved in the first step of accepting electrons from the electrode but is very likely involved in the downstream electron transport events in the periplasm.

Silva, JA, Vale TM, Dias RJ, Paulino H, Lourenço JM.  2015.  Supporting Multiple Data Replication Models in Distributed Transactional Memory. Proceedings of the 2015 International Conference on Distributed Computing and Networking. , Goa, India: ACM Abstract2015-icdcn.pdf

n/a

Delgado, JM, Raymundo A, Vilarigues M, Branco LC, Laia CAT.  2015.  Characterization of a Novel Intrinsic Luminescent Room-Temperature Ionic Liquid Based on P-6,P-6,P-6,P-14 ANS. Chemistry-a European Journal. 21:726-732., Number 2 AbstractWebsite
n/a
Mendo, AS, Figueiredo S, Roma-Rodrigues C, Videira PA, Ma Z, Diniz M, Larguinho M, Costa PM, Lima JC, Pombeiro AJL, Baptista PV, Fernandes AR.  2015.  Characterization of antiproliferative potential and biological targets of a copper compound containing 4'-phenyl terpyridine. Journal of Biological Inorganic Chemistry. 20:935-948., Number 6 AbstractWebsite
n/a
Viciosa, MT, Santos G, Costa A, Danede F, Branco LC, Jordao N, Correia NT, Dionisio M.  2015.  Dipolar motions and ionic conduction in an ibuprofen derived ionic liquid. Physical Chemistry Chemical Physics. 17:24108-24120., Number 37 AbstractWebsite
n/a
Glynn, J, Fortes P, Krook-Riekkola A, Labriet M, Vielle M, Kypreos S, Lehtilä A, Mischke P, Dai H, Gargiulo M, Helgesen PI, Kober T, Summerton P, Merven B, Selosse S, Karlsson K, Strachan N, ÓGallachóir B.  2015.  Economic Impacts of Future Changes in the Energy System—Global Perspectives. Informing Energy and Climate Policies Using Energy Systems Models. 30(George Giannakidis, Labriet, Maryse, Brian ÓGallachóir, GianCarlo Tosato, Eds.).:333-358.: Springer International Publishing Abstract
n/a
Glynn, J, Fortes P, Krook-Riekkola A, Labriet M, Vielle M, Kypreos S, Lehtilä A, Mischke P, Dai H, Gargiulo M, Helgesen PI, Kober T, Summerton P, Merven B, Selosse S, Karlsson K, Strachan N, ÓGallachóir B.  2015.  Economic Impacts of Future Changes in the Energy System—National Perspectives. Informing Energy and Climate Policies Using Energy Systems Models. 30(George Giannakidis, Labriet, Maryse, Brian ÓGallachóir, GianCarlo Tosato, Eds.).:359-387.: Springer International Publishing Abstract
n/a
Chiodi, A, Taylor PG, Seixas J, Simões S, Fortes P, Gouveia JP, Dias L, ÓGallachóir B.  2015.  Energy Policies Influenced by Energy Systems Modelling—Case Studies in UK, Ireland, Portugal and G8. Informing Energy and Climate Policies Using Energy Systems Models. 30(George Giannakidis, Labriet, Maryse, Brian ÓGallachóir, GianCarlo Tosato, Eds.).:15-41.: Springer International Publishing Abstract
n/a
Azevedo, G, Domingues B, Abreu H, Sousa-Pinto I, Feio G, Hilliou L.  2015.  Impact of cultivation of Mastocarpus stellatus in IMTA on the seaweeds chemistry and hybrid carrageenan properties. Carbohydr Polym. 116:140-8. AbstractWebsite

The biomass yield potential of Mastocarpus stellatus, a commercially attractive carrageenophyte for foods and pharmaceutics, was investigated by cultivating the seaweeds in the nutrient-rich outflow of a commercial fish farm. Results from two consecutive 4 weeks experiments indicate that the cultivation of this seaweed produces a mean biomass of 21 to 40.6 gDW m(-2) day(-1) depending on the time of the experiment. DRIFT and CP-MAS NMR analyses of seaweeds indicate that cultivation during May affected quantitatively the seaweeds chemistry, and thus the chemical and gelling properties of native extracts of kappa/iota-hybrid carrageenan (KI). Overall, algal growth leads to the production of more sulphated KI, the percentage increase varying between 27% and 44% for the two experiments. However, alkali treatment of seaweeds before extraction reduces the variations in gelling properties of KI induced by the algal growth. This study demonstrates the capacity of growing M. stellatus in an integrated multi-trophic aquaculture system for the sustainable production of high value polysaccharides.

Nijs, W, Simoes S, Sgobbi A, Ruiz-Castello P, Thiel C, Giannakidis G, Mantzaris J, Tigas K, Dimitroulas D, Georgilakis P, Vournas C.  2015.  Improved Representation of the European Power Grid in Long Term Energy System Models: Case Study of JRC-EU-TIMES. Informing Energy and Climate Policies Using Energy Systems Models. 30(George Giannakidis, Labriet, Maryse, Brian ÓGallachóir, GianCarlo Tosato, Eds.).:201-222.: Springer International Publishing Abstract
n/a
Dias, AMGC, Iranzo O, Roque ACA.  2015.  An in silico and chemical approach towards small protein production and application in phosphoproteomics. RSC Adv.. 5:19743-19751.: The Royal Society of Chemistry AbstractWebsite

The human Pin1 WW domain (hPin1_WW) is a 38 residue protein which specifically recognizes ligands rich in proline and phosphorylated in Ser and Thr residues. This work presents a protocol for the improved chemical synthesis and modification of this protein through automated microwave assisted synthesis combined with the incorporation of pseudoproline units in the protein sequence. After purification{,} the protein was characterized by Mass Spectrometry and Circular Dichroism spectroscopy with results comparable to the same WW domain chemically synthesized by other strategies or biologically expressed. The protein was further immobilized on a matrix and tested for the selective binding and mild elution of phosphorylated sequences at Ser{,} Thr and Tyr residues. These results suggest that hPin1_WW is a useful protein scaffold for the purification of phosphorylated species in pTyr and pSer{,} which can be easily produced and modified by chemical methods.

Dantas, JM, Kokhan O, Pokkuluri RP, Salgueiro CA.  2015.  Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1847:1129-1138., Number 10 AbstractWebsite

Abstract Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the \{HS\} analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for \{HS\} respiration in G. sulfurreducens, but the process is far from fully understood. In this work, \{NMR\} chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS, and to measure their binding affinity. The results showed that the \{AH2QDS\} binds reversibly to the more solvent exposed edge of PpcA heme IV. The \{NMR\} and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme İV\} (− 127 mV) compared to that of \{AH2QDS\} (− 184 mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between \{AH2QDS\} and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. Such behavior might confer selective advantage to G. sulfurreducens, which can utilize the \{HS\} in any redox state available in the environment for its metabolic needs.

Costa, D, Galvao AM, Di Paolo RE, Freitas AA, Lima JC, Quina FH, Macanita AL.  2015.  Photochemistry of the hemiketal form of anthocyanins and its potential role in plant protection from UV-B radiation. Tetrahedron. 71:3157-3162., Number 20 AbstractWebsite
n/a
Corvo, M, Sardinha J, Casimiro T, Marin G, Seferin M, Einloft S, Menezes SC, Dupont J, Cabrita EJ.  2015.  A Rational Approach to CO2 Capture by Imidazolium Ionic Liquids: Tuning CO2 Solubility by Cation Alkyl Branching. ChemSusChem. 8:1935-46., Number 11 AbstractWebsite

Branching at the alkyl side chain of the imidazolium cation in ionic liquids (ILs) was evaluated towards its effect on carbon dioxide (CO2 ) solubilization at 10 and 80 bar (1 bar=1x10(5) Pa). By combining high-pressure NMR spectroscopy measurements with molecular dynamics simulations, a full description of the molecular interactions that take place in the IL-CO2 mixtures can be obtained. The introduction of a methyl group has a significant effect on CO2 solubility in comparison with linear or fluorinated analogues. The differences in CO2 solubility arise from differences in liquid organization caused by structural changes in the cation. ILs with branched cations have similar short-range cation-anion orientations as those in ILs with linear side chains, but present differences in the long-range order. The introduction of CO2 does not cause perturbations in the former and benefits from the differences in the latter. Branching at the cation results in sponge-like ILs with enhanced capabilities for CO2 capture.

Dantas, J, Morgado L, Aklujkar M, Bruix M, Londer Y, Schiffer M, Pokkuluri RP, Salgueiro C.  2015.  Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies. Frontiers in Microbiology. 6:752. AbstractWebsite

Multiheme cytochromes have been implicated in Geobacter sulfurreducens (Gs) extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by Gs. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of Gs multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of Gs by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell’s outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of Gs. For the first time Gs strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve bioelectrochemical technologies.

Santos, TC, de Oliveira AR, Dantas JM, Salgueiro CA, Cordas CM.  2015.  Thermodynamic and kinetic characterization of PccH, a key protein in microbial electrosynthesis processes in Geobacter sulfurreducens. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1847:1113-1118., Number 10 AbstractWebsite

Abstract The monoheme c-type cytochrome PccH from Geobacter sulfurreducens, involved in the pathway of current-consumption in biofilms, was electrochemically characterized in detail. Cyclic voltammetry was used to determine the kinetics and thermodynamics properties of PccH redox behavior. Entropy, enthalpy and Gibbs free energy changes associated with the redox center transition between the ferric and the ferrous state were determined, indicating an enhanced solvent exposure. The midpoint redox potential is considerably low for a monoheme c-type cytochrome and the heterogeneous electron transfer constant rate reflects a high efficiency of electron transfer process in PccH. The midpoint redox potential dependence on the pH (redox-Bohr effect) was investigated, over the range of 2.5 to 9.1, and is described by the protonation/deprotonation events of two distinct centers in the vicinity of the heme group with pKa values of 2.7 (pKox1); 4.1 (pKred1) and 5.9 (pKox2); 6.4 (pKred2). Based on the inspection of PccH structure, these centers were assigned to heme propionic acids \{P13\} and P17, respectively. The observed redox-Bohr effect indicates that PccH is able to thermodynamically couple electron and proton transfer in the G. sulfurreducens physiological pH range.

Ullaha, S, Matteis DF, Branquinho R, Fortunato E, Martins R, Davoli I.  2015.  {A combination of solution synthesis solution combustion synthesis for highly conducting and transparent Aluminum Zinc Oxide thin films}. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). :144–147. Abstract

Aluminum Zinc Oxide has been extensively investigated as a cheap alternative to transparent conducting tin oxide films for electronic and optoelectronic applications. Thin films of Aluminum Zinc Oxide have been developed successfully through a combination of solution combustion synthesis and solution synthesis. Zn(NO3)3·6H2O as metal source was dissolved in 2-methoxyethanol as solvent through combustion synthesis with Urea as fuel while dopant source of AlCl3·6H2O was mixed separately in solvent to avoid aluminum oxide formation in the films. Precursor solutions were obtained mixing Zn {&} Al separate solutions in 9:1, 8:2, and 7:3 ratios respectively with oxide, fuel and dopant concentrations of 0.5, 0.25, 0.1, and 0.05 M. The film stacks have been prepared through spin-coating with heating at 400°C for 10 minutes after each deposition to remove residuals and evaporate solvents. Thermal annealing in oven at 600°C for 1 hour followed by rapid thermal annealing at 500°C {&} 600°C first in vacuum and then in N2-5{%}H2 environment respectively for 10 minutes each reduced the resistivity of film stacks. Film stack with 10 layers for an average thickness of 0.5$μ$m gave the best Hall Effect resistivity of 3.2 × 10-2 $Ømega$-cm in the case of 0.5M solution with Zn:Al mixing ratio of 9:1 for RTA annealings at 600°C with an average total transparency of 80 {%} in the wavelength range of 400-1200 nm. The results show a clear trend that increasing the amount of ingredients resistivity could further be decreased.

2014
Jesus, AR, Dias C, Matos AM, de Almeida RFM, Viana AS, Marcelo F, Ribeiro RT, Macedo MP, Airoldi C, Nicotra F, Martins A, Cabrita EJ, Jimenez-Barbere J, Rauter AP.  2014.  Exploiting the Therapeutic Potential of 8-beta-D-Glucopyranosylgenistein: Synthesis, Antidiabetic Activity, and Molecular Interaction with Islet Amyloid Polypeptide and Amyloid beta-Peptide (1-42), {NOV 27}. Journal of Medicinal Chemistry. 57:9463-9472., Number {22} Abstract

8-β-d-Glucopyranosylgenistein (1), the major component of Genista tenera, was synthesized and showed an extensive therapeutical impact in the treatment of STZ-induced diabetic rats, producing normalization of fasting hyperglycemia and amelioration of excessive postprandial glucose excursions and and increasing β-cell sensitivity, insulin secretion, and circulating insulin within 7 days at a dose of 4 (mg/kg bw)/day. Suppression of islet amyloid polypeptide (IAPP) fibril formation by compound 1 was demonstrated by thioflavin T fluorescence and atomic force microscopy. Molecular recognition studies with IAPP and Aβ1-42 employing saturation transfer difference (STD) confirmed the same binding mode for both amyloid peptides as suggested by their deduced epitope. Insights into the preferred conformation in the bound state and conformers' geometry resulting from interaction with Aβ1-42 were also given by STD, trNOESY, and MM calculations. These studies strongly support 8-β-d-glucopyranosylgenistein as a promising molecular entity for intervention in amyloid events of both diabetes and the frequently associated Alzheimer's disease.

Carlos, {FF}, Flores O, Doria G, Baptista P.  2014.  Characterization of genomic single nucleotide polymorphism via colorimetric detection using a single gold nanoprobe, nov. Analytical Biochemistry. 465:1–5.: ACADEMIC PRESS INC ELSEVIER SCIENCE Abstract

Identification of specific nucleic acid sequences mediated by gold nanoparticles derivatized thiol-modified oligonucleotides (Au-nanoprobes) has been proven to be a useful tool in molecular diagnostics. Here, we demonstrate that, on optimization, detection may be simplified via the use of a single Au-nanoprobe to detect a single nucleotide polymorphism (SNP) in homo- or heterozygote condition. We validated this non-cross-linking approach through the analysis of 20 clinical samples using a single specific Au-nanoprobe for an SNP in the FTO (fat mass and obesity-associated) gene against direct DNA sequencing. Sensitivity, specificity, and limit of detection CLOD) were determined, and statistical differences were calculated by one-way analysis of variance (ANOVA) and a post hoc Tukey's test to ascertain whether there were any differences between Au-nanoprobe genotyped groups. For the first time, we show that the use of a single Au-nanoprobe can detect SNP for each genetic status (wild type, heterozygous, or mutant) with high degrees of sensitivity (87.50%) and specificity (91.67%). (c) 2014 Elsevier Inc. All rights reserved.

Larguinho, M, Cordeiro A, Diniz M, Costa {PM }, Baptista P.  2014.  Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide, nov. Environmental Research. 135:55–62.: Academic Press | Elsevier Abstract

Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50 approximate to 400 mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10 mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated. (C) 2014 Elsevier Inc. All rights reserved.

Pereira, L, Gaspar D, Guerin D, a Delattre, Fortunato E, Martins R.  2014.  {The influence of fibril composition and dimension on the performance of paper gated oxide transistors.}, mar. Nanotechnology. 25:094007., Number 9 AbstractWebsite

Paper electronics is a topic of great interest due the possibility of having low-cost, disposable and recyclable electronic devices. The final goal is to make paper itself an active part of such devices. In this work we present new approaches in the selection of tailored paper, aiming to use it simultaneously as substrate and dielectric in oxide based paper field effect transistors (FETs). From the work performed, it was observed that the gate leakage current in paper FETs can be reduced using a dense microfiber/nanofiber cellulose paper as the dielectric. Also, the stability of these devices against changes in relative humidity is improved. On other hand, if the pH of the microfiber/nanofiber cellulose pulp is modified by the addition of HCl, the saturation mobility of the devices increases up to 16 cm(2) V(-1) s(-1), with an ION/IOFF ratio close to 10(5).

Rahangdale, HV, Guerra M, Das PK, De S, Santos JP, Mitra D, Saha S.  2014.  Determination of subshell-resolved <span class="aps-inline-formula"><math><mi>L</mi></math></span>-shell-ionization cross sections of gold induced by 15–40-keV electrons, Jun 14. Physical Review A. 89:052708., Number 5 AbstractWebsite
n/a
Larguinho, M, Correia D, Diniz M, Baptista P.  2014.  Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels, jul. Journal Of Nanoparticle Research. 16, Number 8: Kluwer Academic Publishers Abstract

This work reports a one-way flow bioaccumulation of gold nanoparticles (AuNPs) in aquatic organisms between two trophic levels. First, Dunaliella salina cells were exposed to citrate-capped AuNPs at different concentrations and during distinct exposure periods to assess internalization and behavior. Afterward, D. salina was incubated with both citrate-capped and functionalized (PEGylated) AuNPs for 24 h and later fed to Mytilus galloprovincialis. Analysis was carried out to assess Au content, histological differences and oxidative stress. These algae were fed to the model organism M. galloprovincialis (Mediterranean mussel) as it is considered of major importance for assessing toxic effects and bioaccumulation of different pollutants in aquatic environments. Elemental Au analysis revealed an uptake of about 76 % of the initial amount of AuNPs (and 36 % for PEGylated AuNPs) in microalgae. Mussel gills and digestive gland showed variable Au content in individuals fed with D. salina previously exposed to AuNPs. No significant morphological alterations were observed in D. salina or mussel digestive glands. Glutathione-s-transferase activity and total antioxidant capacity were assessed as oxidative stress biomarkers showing that AuNPs are not prone to trigger the induction of defenses against oxidative stress.

Larguinho, M, Costa PM, c}alo Sousa G{\c, Diniz {MS }, Costa {MH}, Baptista P.  2014.  Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: Correlation with genotoxicity and metabolic alterations, dec. Journal of Applied Toxicology. 34:1293–1302., Number 12: John Wiley & Sons, Ltd. Abstract

Acrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure.

loading