Paiva, TG, Zanatta M, Cabrita EJ, Bernardes CES, Corvo MC.
2022.
DMSO/IL solvent systems for cellulose dissolution: Binary or ternary mixtures?, {JAN 1} Journal of Molecular Liquids. 345:117810.
Abstract{The mechanism of cellulose dissolution in ionic liquid (IL)/dimethyl sulfoxide (DMSO) solvent systems has attracted much attention due to the possible replacement of synthetic materials. However, the solvent behaviour is not completely understood. This work has found an explanation for the solvent behaviour in cellulose dissolution, considering the almost unavoidable presence of the water. Ternary {[}C(4)mim] Cl/DMSO/H2O mixtures were studied with Nuclear Magnetic Resonance experiments and molecular dynamics simulations to explore IL/molecular solvents interactions and disclose the water interactions in these complex media. Titration of binary and ternary solvent systems with water and DMSO disclosed a relation between water's proton chemical shift and the molar fraction of the mixture components, creating an unprecedent theory to predict the cellulose solvation ability. A ``working range{''} for IL/DMSO/H2O ratio was observed, tested in cellulose dissolution, and rationalized using cellobiose interaction. Within this solvent ratio, the interactions between components are maximized, being switched on, while out of the range, the interactions are no longer detected. (C) 2021 Elsevier B.V. All rights reserved.}
Sarrato, J, Pinto AL, Cruz H, Jordao N, Malta G, Branco PS, Carlos Lima J, Branco LC.
2022.
Effect of Iodide-Based Organic Salts and Ionic Liquid Additives in Dye-Sensitized Solar Cell Performance, SEP. NANOMATERIALS. 12, Number 17
Abstractn/a
Lenis-Rojas, {OA}, Roma-Rodrigues C, Carvalho B, Cabezas-Sainz P, {Fernández Vila} S, Sánchez L, Baptista {PV}, Fernandes {AR}, Royo B.
2022.
In Vitro and In Vivo Biological Activity of Ruthenium 1,10-Phenanthroline-5,6-dione Arene Complexes, nov. International Journal of Molecular Sciences. 23, Number 21: MDPI - Multidisciplinary Digital Publishing Institute
AbstractRuthenium(II) arene complexes exhibit promising chemotherapeutic properties. In this study, the effect of the counter anion in Ru(II) complexes was evaluated by analyzing the biological effect of two Ru(II) p-cymene derivatives with the 1,10-phenanthroline-5,6-dione ligand of general-formula [(η6-arene)Ru(L)Cl][X] X = CF3SO3 (JHOR10) and PF6 (JHOR11). The biological activity of JHOR10 and JHOR11 was examined in the ovarian carcinoma cell line A2780, colorectal carcinoma cell line HCT116, doxorubicin-resistant HCT116 (HCT116-Dox) and in normal human dermal fibroblasts. Both complexes JHOR10 and JHOR11 displayed an antiproliferative effect on A2780 and HCT116 cell lines, and low cytotoxicity in fibroblasts. Interestingly, JHOR11 also showed antiproliferative activity in the HCT116-Dox cancer cell line, while JHOR10 was inactive. Studies in A2780 cells showed that JHOR11 induced the production of reactive oxygen species (ROS) that trigger autophagy and cellular senescence, but no apoptosis induction. Further analysis showed that JHOR11 presented no tumorigenicity, with no effect in the cellular mobility, as evaluated by thye wound scratch assay, and no anti- or pro-angiogenic effect, as evaluated by the ex-ovo chorioallantoic membrane (CAM) assay. Importantly, JHOR11 presented no toxicity in chicken and zebrafish embryos and reduced in vivo the proliferation of HCT116 injected into zebrafish embryos. These results show that these are suitable complexes for clinical applications with improved tumor cell cytotoxicity and low toxicity, and that counter-anion alteration might be a viable clinical strategy for improving chemotherapy outcomes in multidrug-resistant (MDR) tumors.
Palma, SICJ, Frazao J, Alves R, Costa HMA, Alves C, Gamboa H, Silveira M, Roque ACA.
2022.
Learning to see VOCs with Liquid Crystal Droplets, may. 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). :1–4.: IEEE
AbstractIn hybrid gels with immobilized liquid crystal
(LC) droplets, fast and unique optical texture variations are
generated when distinct volatile organic compounds (VOCs)
interact with the LC and disturb its molecular order. The
optical texture variations can be observed under a polarized
optical microscope or transduced into a signal representing the
variations of light transmitted through the LC. We show how
hybrid gels can accurately identify 11 distinct VOCs by using
deep learning to analyze optical texture variations of individual
droplets (0.93 average F1-score) and by using machine learning
to analyze 1D optical signals from multiple droplets in hybrid
gels (0.88 average F1-score)
Esteves, C, Palma S, Costa H, Alves C, Santos G, Ramou E, Roque AC.
2022.
VOC Sensing in Humid and Dry Environments, may. 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). :1–3.: IEEE
AbstractWe report the development of gas-sensing multicomponent hybrid materials to be used under humidified and dried environments without the need of sample preconditioning or heavy signal processing. The easy tunability and the unique characteristics presented by the multicomponent hybrid materials suggests their use in nearterm applications in electronic nose systems able to operate in dry or humidified environments.
Coelho, {BJ}, Veigas B, Bettencourt L, Águas H, Fortunato E, Martins R, Baptista {PV}, Igreja R.
2022.
Digital Microfluidics-Powered Real-Time Monitoring of Isothermal DNA Amplification of Cancer Biomarker, mar. Biosensors. 12, Number 4: MDPI - Multidisciplinary Digital Publishing Institute
AbstractWe introduce a digital microfluidics (DMF) platform specifically designed to perform a loop-mediated isothermal amplification (LAMP) of DNA and applied it to a real-time amplification to monitor a cancer biomarker, c-Myc (associated to 40% of all human tumors), using fluorescence microscopy. We demonstrate the full manipulation of the sample and reagents on the DMF platform, resulting in the successful amplification of 90 pg of the target DNA (0.5 ng/µL) in less than one hour. Furthermore, we test the efficiency of an innovative mixing strategy in DMF by employing two mixing methodologies onto the DMF droplets—low frequency AC (alternating current) actuation as well as back-and-forth droplet motion—which allows for improved fluorescence readouts. Fluo-rophore bleaching effects are minimized through on-chip sample partitioning by DMF processes and sequential droplet irradiation. Finally, LAMP reactions require only 2 µL volume droplets, which represents a 10-fold volume reduction in comparison to benchtop LAMP.
Rodrigo, {AP }, Lopes {AC}, Pereira R, Anjo {SI }, Manadas B, Grosso {AR }, Baptista {PV}, Fernandes {AR}, Costa {PM }.
2022.
Endogenous Fluorescent Proteins in the Mucus of an Intertidal Polychaeta: Clues for Biotechnology, mar. Marine Drugs. 20, Number 4: MDPI - Multidisciplinary Digital Publishing Institute
AbstractThe vast ocean holds many unexplored organisms with unique adaptive features that enable them to thrive in their environment. The secretion of fluorescent proteins is one of them, with reports on the presence of such compounds in marine annelids being scarce. The intertidal Eulalia sp. is an example. The worm secretes copious amounts of mucus, that when purified and concentrated extracts, yield strong fluorescence under UV light. Emission has two main maxima, at 400 nm and at 500 nm, with the latter responsible for the blue–greenish fluorescence. Combining proteomics and transcriptomics techniques, we identified ubiquitin, peroxiredoxin, and 14-3-3 protein as key elements in the mucus. Fluorescence was found to be mainly modulated by redox status and pH, being consistently upheld in extracts prepared in Tris-HCl buffer with reducing agent at pH 7 and excited at 330 nm. One of the proteins associated with the fluorescent signal was localized in secretory cells in the pharynx. The results indicate that the secretion of fluorescent proteinaceous complexes can be an important defense against UV for this dweller. Additionally, the internalization of fluorescent complexes by ovarian cancer cells and modulation of fluorescence of redox status bears important considerations for biotechnological application of mucus components as markers.
Alexandre, D, Teixeira B, Rico A, Valente S, Craveiro A, Baptista {PV}, Cruz C.
2022.
Molecular Beacon for Detection miRNA-21 as a Biomarker of Lung Cancer, mar. International Journal of Molecular Sciences. 23, Number 6: MDPI - Multidisciplinary Digital Publishing Institute
AbstractLung cancer (LC) is the leading cause of cancer-related death worldwide. Although the diagnosis and treatment of non-small cell lung cancer (NSCLC), which accounts for approximately 80% of LC cases, have greatly improved in the past decade, there is still an urgent need to find more sensitive and specific screening methods. Recently, new molecular biomarkers are emerging as potential non-invasive diagnostic agents to screen NSCLC, including multiple microRNAs (miRNAs) that show an unusual expression profile. Moreover, peripheral blood mononuclear cells’ (PBMCs) miRNA profile could be linked with NSCLC and used for diagnosis. We developed a molecular beacon (MB)-based miRNA detection strategy for NSCLC. Following PBMCs isolation and screening of the expression profile of a panel of miRNA by RT-qPCR, we designed a MB targeting of up-regulated miR-21-5p. This MB 21-5p was characterized by FRET-melting, CD, NMR and native PAGE, allowing the optimization of an in-situ approach involving miR-21-5p detection in PBMCs via MB. Data show the developed MB approach potential for miR-21-5p detection in PBMCs from clinical samples towards NSCLC.
Moreira, IP, Esteves C, Palma SICJ, Ramou E, Carvalho ALM, Roque ACA.
2022.
Synergy between silk fibroin and ionic liquids for active gas-sensing materials, jun. Materials Today Bio. 15:100290.: Elsevier
Abstract
Silk fibroin is a biobased material with excellent biocompatibility and mechanical properties, but its use in bioelectronics is hampered by the difficult dissolution and low intrinsic conductivity. Some ionic liquids are known to dissolve fibroin but removed after fibroin processing. However, ionic liquids and fibroin can cooperatively give rise to functional materials, and there are untapped opportunities in this combination. The dissolution of fibroin, followed by gelation, in designer ionic liquids from the imidazolium chloride family with varied alkyl chain lengths (2–10 carbons) is shown here. The alkyl chain length of the anion has a large impact on fibroin secondary structure which adopts unconventional arrangements, yielding robust gels with distinct hierarchical organization. Furthermore, and due to their remarkable air-stability and ionic conductivity, fibroin ionogels are exploited as active electrical gas sensors in an electronic nose revealing the unravelled possibilities of fibroin in soft and flexible electronics.
Ferreira‐silva, M, Faria‐silva C, Carvalheiro {MC }, Simões S, Marinho S}{H, Marcelino P, Campos {MC}, Metselaar {JM }, Fernandes E, Baptista {PV}, Fernandes {AR}, Corvo L}{M.
2022.
Quercetin Liposomal Nanoformulation for Ischemia and Reperfusion Injury Treatment, jan. Pharmaceutics. 14, Number 1: MDPI AG
AbstractIschemia and reperfusion injury (IRI) is a common complication caused by inflammation and oxidative stress resulting from liver surgery. Current therapeutic strategies do not present the desirable efficacy, and severe side effects can occur. To overcome these drawbacks, new therapeutic alternatives are necessary. Drug delivery nanosystems have been explored due to their capacity to improve the therapeutic index of conventional drugs. Within nanocarriers, liposomes are one of the most successful, with several formulations currently in the market. As improved therapeutic outcomes have been demonstrated by using liposomes as drug carriers, this nanosystem was used to deliver quercetin, a flavonoid with anti-inflammatory and antioxidant properties, in hepatic IRI treatment. In the present work, a stable quercetin liposomal formulation was developed and characterized. Additionally, an in vitro model of ischemia and reperfusion was developed with a hypoxia chamber, where the anti-inflammatory potential of liposomal quercetin was evaluated, revealing the downregulation of pro-inflammatory markers. The anti-inflammatory effect of quercetin liposomes was also assessed in vivo in a rat model of hepatic IRI, in which a decrease in inflammation markers and enhanced recovery were observed. These results demonstrate that quercetin liposomes may provide a significant tool for addressing the current bottlenecks in hepatic IRI treatment.
Lenis-Rojas, {OA}, Carvalho B, Cabral R, Silva M, Friães S, Roma-Rodrigues C, Meireles {MSH }, Gomes {CSB}, Fernández {JAA }, Vila {SF }, Rubiolo {JA }, Sanchez L, Baptista {PV}, Fernandes {AR}, Royo B.
2022.
Manganese(I) tricarbonyl complexes as potential anticancer agents, feb. JBIC Journal of Biological Inorganic Chemistry. 27:49–64., Number 1: Springer
AbstractThe antiproliferative activity of [Mn(CO)3(N^N)Br] (N^N = phendione 1, bipy 3) and of the two newly synthesized Mn complexes [Mn(CO)3(acridine)(phendione)]OTf (2) and [Mn(CO)3(di-triazole)Br] (4) has been evaluated by MTS against three tumor cell lines A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), HCT116doxR (colorectal carcinoma resistant to doxorubicin), and in human dermal fibroblasts. The antiproliferative assay showed a dose-dependent effect higher in complex 1 and 2 with a selectivity toward ovarian carcinoma cell line 21 times higher than in human fibroblasts. Exposure of A2780 cells to IC50 concentrations of complex 1 and 2 led to an increase of reactive oxygen species that led to the activation of cell death mechanisms, namely via intrinsic apoptosis for 2 and autophagy and extrinsic apoptosis for 1. Both complexes do not target DNA or interfere with cell cycle progression but are able to potentiate cell migration and neovascularization (for 2) an indicative that their application might be directed for initial tumor stages to avoid tumor invasion and metastization and opening a new avenue for complex 2 application in regenerative medicine. Interestingly, both complexes do not show toxicity in both in vivo models (CAM and zebrafish). Graphical abstract: [Figure not available: see fulltext.]