[ Publications ]

Export 71 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Mossbauer spectroscopic and kinetic characterization of ferric clusters formed in h-chain ferritin mineralization., Tavares, P., Pereira A. S., Lloyd S. G., Danger D., Edmondson D. E., Theil EC, and Huynh B. H. , Abstracts Of Papers Of The American Chemical Society, Volume {213}, Number {2}, p.{503-INOR}, (1997) Abstract
n/a
N
New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway, Folgosa, Filipe, Cordas Cristina M., Santos Joana A., Pereira Alice S., Moura Jose J. G., Tavares Pedro, and Moura Isabel , BIOCHEMICAL JOURNAL, Volume {438}, Number {3}, p.{485-494}, (2011) Abstract

SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two ironcentre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8 x 10(7) M(-1) . s(-1) and 1.3 x 10(6) M(-1) . s(-1) for SOR(Fe(IIII)-Fe(II)) and for SOR(Fe(IIII)-Fe(III)) forms respectively, and 3.2 x 10(6) M(-1) s(-1) for the SOR(Zn(II)-Fe(III)) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.

A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774, Gavel, Olga Yu, Bursakov Sergey A., Di Rocco Giulia, Trincao Jose, Pickering Ingrid J., George Graham N., Calvete Juan J., Shnyrov Valery L., Brondino Carlos D., Pereira Alice S., Lampreia Jorge, Tavares Pedro, Moura Jose J. G., and Moura Isabel , Journal Of Inorganic Biochemistry, Volume {102}, Number {5-6}, p.{1380-1395}, (2008) Abstract

Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the ``LID'' domain. The sequence (129)Cys-X(5)-His-X(15)-Cys-X(2)-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain. (C) 2008 Elsevier Inc. All rights reserved.

Nitric oxide reductase: Direct electrochemistry and electrocatalytic activity, Cordas, Cristina M., Pereira Alice S., Martins Carlos E., Timoteo Cristina G., Moura Isabel, Moura Jose J. G., and Tavares Pedro , Chembiochem, Dec, Volume {7}, Number {12}, p.{1878-1881}, (2006) Abstract
n/a
Nitrous oxide reductase (N2OR) from Pseudomonas nautica 617, Cabrito, I., Pereira A. S., Tavares P., Besson S., Brondino C., Hoffman B., Brown K., Tegoni M., Cambillau C., Moura J. J. G., and Moura I. , Journal Of Inorganic Biochemistry, Aug, Volume {86}, Number {1}, p.{165}, (2001) Abstract
n/a