[ Publications ]

Export 71 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Copper-containing nitrous oxide reductase from Pseudomonas nautica: spectroscopic and redox properties, Prudencio, M., Pereira A. S., Tavares P., Besson S., and Moura I. , Journal Of Inorganic Biochemistry, Volume {74}, Number {1-4}, p.{267}, (1999) Abstract
n/a
CRYSTAL-STRUCTURE OF DESULFOREDOXIN FROM DESULFOVIBRIO-GIGAS DETERMINED AT 1.8 ANGSTROM RESOLUTION - A NOVEL NONHEME IRON PROTEIN-STRUCTURE, Archer, M., Huber R., Tavares P., Moura I., Moura J. J. G., Carrondo M. A., Sieker L. C., Legall J., and Romão M. J. , JOURNAL OF MOLECULAR BIOLOGY, Volume {251}, Number {5}, p.{690-702}, (1995) Abstract

The crystal structure of desulforedoxin from Desulfovibrio gigas, a new homo-dimeric (2x36 amino acids) non-heme iron protein, has been solved by the SIRAS method using the indium-substituted protein as the single derivative. The structure was refined to a crystallographic X-factor of 16.9% at 1.8 Angstrom resolution. Native desulforedoxin crystals were grown from either PEG 4K or lithium sulfate, with cell constants a = b = 42.18 Angstrom, = 72.22 Angstrom (for crystals grown from PEG 4K), and they belong to space group P3(2)21. The indium-substituted protein crystallized isomorphously under the same conditions. The 2-fold symmetric dimer is firmly hydrogen bonded and folds as an incomplete beta-barrel with the two iron centers placed on opposite poles of the molecule. Each iron atom is coordinated to four cysteinyl residues in a distorted tetrahedral arrangement. Both iron atoms are 16 Angstrom apart but connected across the 2-fold axis by 14 covalent bonds along the polypeptide chain plus two hydrogen bonds. Desulforedoxin and rubredoxin share some structural features but show significant differences in terms of metal environment and water structure, which account for the known spectroscopic differences between rubredoxin and desulforedoxin. (C) 1995 Academic Press Limited

D
Desulfovibrio vulgaris bacterioferritin uses H2O2 as a co-substrate for iron oxidation and reveals DPS-like DNA protection and binding activities, Timoteo, Cristina G., Guilherme Marcia, Penas Daniela, Folgosa Filipe, Tavares Pedro, and Pereira Alice S. , BIOCHEMICAL JOURNAL, Volume {446}, Number {1}, p.{125-133}, (2012) Abstract

A gene encoding Bfr (bacterioferritin) was identified and isolated from the genome of Desulfovibrio vulgaris cells, and overexpressed in Escherichia coli. In vitro, H2O2 oxidizes Fe2+ ions at much higher reaction rates than O-2. The H2O2 oxidation of two Fe2+ ions was proven by Mossbauer spectroscopy of rapid freeze-quenched samples. On the basis of the Mossbauer parameters of the intermediate species we propose that D. vulgaris Bfr follows a mineralization mechanism similar to the one reported for vertebrate H-type ferritins subunits, in which a diferrous centre at the ferroxidase site is oxidized to diferric intermediate species, that are subsequently translocated into the inner nanocavity. D. vulgaris recombinant Bfr oxidizes and stores up to 600 iron atoms per protein. This Bfr is able to bind DNA and protect it against hydroxyl radical and DNase deleterious effects. The use of H2O2 as an oxidant, combined with the DNA binding and protection activities, seems to indicate a DPS (DNA-binding protein from starved cells)-like role for D. vulgaris Bfr.

Developmen of an electrochemical biosensor for nitrite determination, Almeida, G., Tavares P., Lampreia J., Moura J. J. G., and Moura I. , Journal Of Inorganic Biochemistry, Aug, Volume {86}, Number {1}, p.{121}, (2001) Abstract
n/a
Development and validation of an HPLC/UV method for quantification of bioactive peptides in fermented milks, Ferreira, Isabel M. P. L. V. O., Eca Rosario, Pinho Olívia, Tavares Pedro, Pereira Alice, and Roque Ana Cecilia , JOURNAL OF LIQUID CHROMATOGRAPHY \& RELATED TECHNOLOGIES, Volume {30}, Number {13-16}, p.{2139-2147}, (2007) Abstract

The simultaneous separation and quantification of two casein peptides (IPP, VPP) presenting potent inhibitory activity of angiotensin-converting-enzyme (ACE) and casein in fermented milks was developed. Gradient elution was carried out at a flow-rate of 1 mL/min, using a mixture of two solvents. Solvent A was 0.1% TFA in water and solvent B was acetonitrile-water-trifluoracetic acid 95:5:0.1. The effluent was monitored by UV detector at 214 nm. Calibration curves were constructed in the interval of 0.01-1.0 mg/mL for VPP, 0.005-1.0 mg/mL for IPP, and 0.05-3.0 mg/mL for casein. R 2 invariably exceeded 0.999. The detection limits were 0.004 for VPP, 0.002 mg/mL for IPP, and 0.02 mg/mL for casein. Repeatability of the method was evaluated by six consecutive injections of two standard solutions containing VPP, IPP, and casein. The RSD values for concentration were all below 5.08%. Recovery studies were carried out to determine the accuracy of the method. Recoveries ranged between 88 and 98.2%. The methodology was applied, not only, for the monitorization of VPP, IPP, and casein in commercial fermented milks labeled as presenting anti hypertensive properties, but also, in milk with different degrees of fermentation by L Helveticus, and in other commercial functional fermented milks, such as, those presenting cholesterol lowering properties.