[ Publications ]

Export 57 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
B
Bacterioferritin from Desulfovibrio vulgaris Hildenborough is a functional DPS-like enzyme, Folgosa, F., Timóteo C. G., Guilherme M., Penas D., Tavares P., and Pereira A. S. , FEBS JOURNAL, Sep, Volume {279}, Number {1, SI}, p.{465}, (2012) Abstract
n/a
Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli, Pereira, A. S., Tavares P., Krebs C., Huynh B. H., Rusnak F., Moura I., and Moura J. J. G. , Biochemical And Biophysical Research Communications, Volume {260}, Number {1}, p.{209-215}, (1999) Abstract

Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfide-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mossbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data. (C) 1999 Academic Press.

C
Ca2+ and the bacterial peroxidases: the cytochrome c peroxidase from Pseudomonas stutzeri, Timóteo, C. G., Tavares P., Goodhew C. F., Duarte L. C., Jumel K., Girio F. M. F., Harding S., Pettigrew G. W., and Moura I. , JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, Feb, Volume {8}, Number {1-2}, p.{29-37}, (2003) Abstract

The production of cytochrome c peroxidase (CCP) from Pseudomonas (Ps.) stutzeri (ATCC 11607) was optimized by adjusting the composition of the growth medium and aeration of the culture. The protein was isolated and characterized biochemically and spectroscopically in the oxidized and mixed valence forms. The activity of Ps. stutzeri CCP was studied using two different ferrocytochromes as electron donors: Ps. stutzeri cytochrome C-551 (the physiological electron donor) and horse heart cytochrome c. These electron donors interact differently with Ps. stutzeri CCP, exhibiting different ionic strength dependence. The CCP from Paracoccus (Pa.) denitrificans was proposed to have two different Ca2+ binding sites: one usually occupied (site I) and the other either empty or partially occupied in the oxidized enzyme (site II). The Ps. stutzeri enzyme was purified in a form with tightly bound Ca2+. The affinity for Ca2+ in the mixed valence enzyme is so high that Ca2+ returns to it from the EGTA which was added to empty the site in the oxidized enzyme. Molecular mass determination by ultracentrifugation and behavior on gel filtration chromatography have revealed that this CCP is isolated as an active dimer, in contrast to the Pa. denitrificans CCP which requires added Ca2+ for formation of the dimer and also for activation of the enzyme. This is consistent with the proposal that Ca2+ in the bacterial peroxidases influences the monomer/dimer equilibrium and the transition to the active form of the enzyme. Additional Ca2+ does affect both the kinetics of oxidation of horse heart cytochrome c (but not cytochrome C-551) and higher aggregation states of the enzyme. This suggests the presence of a superficial Ca2+ binding site of low affinity.

Calcium in bacterial peroxidases - Pseudomonas stutzeri cytochrome c peroxidase, Timóteo, C. G., Tavares P., Pettigrew G. W., and Moura I. , Journal Of Inorganic Biochemistry, Aug, Volume {86}, Number {1}, p.{456}, (2001) Abstract
n/a
Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase, Conrath, Katja, Pereira Alice S., Martins Carlos E., Timoteo Cristina G., Tavares Pedro, Spinelli Silvia, Kinne Joerg, Flaudrops Christophe, Cambillau Christian, Muyldermans Serge, Moura Isabel, Moura Jose J. G., Tegoni Mariella, and Desmyter Aline , PROTEIN SCIENCE, Apr, Volume {18}, Number {3}, p.{619-628}, (2009) Abstract

Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies (TM)). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.