[ Publications ]

Export 57 results:
Sort by: Author Title Type [ Year  (Desc)]
2001
Developmen of an electrochemical biosensor for nitrite determination, Almeida, G., Tavares P., Lampreia J., Moura J. J. G., and Moura I. , Journal Of Inorganic Biochemistry, Aug, Volume {86}, Number {1}, p.{121}, (2001) Abstract
n/a
Nitrous oxide reductase (N2OR) from Pseudomonas nautica 617, Cabrito, I., Pereira A. S., Tavares P., Besson S., Brondino C., Hoffman B., Brown K., Tegoni M., Cambillau C., Moura J. J. G., and Moura I. , Journal Of Inorganic Biochemistry, Aug, Volume {86}, Number {1}, p.{165}, (2001) Abstract
n/a
Mossbauer characterization of the iron-sulfur clusters in Desulfovibrio vulgaris hydrogenase, Pereira, A. S., Tavares P., Moura I., Moura J. J. G., and Huynh B. H. , Journal Of The American Chemical Society, Volume {123}, Number {12}, p.{2771-2782}, (2001) Abstract

The periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenbourough) is an all Fe-containing hydrogenase. It contains two ferredoxin type [4Fe-4S] clusters, termed the F clusters, and a catalytic H cluster. Recent X-ray crystallographic studies on two Fe hydrogenases revealed that the H cluster is composed of two sub-clusters, a [4Fe-4S] cluster ([4Fe-4S]H) and-a binuclear Fe cluster ([2Fe]H), bridged by a cysteine sulfur. The aerobically purified D. vulgaris hydrogenase is stable in air. It is inactive and requires reductive activation. Upon reduction, the enzyme becomes sensitive to O(2) indicating that the reductive activation process is irreversible. Previous EPR investigations showed that upon reoxidation (under argon) the H cluster exhibits a rhombic EPR signal that is not seen in the as-purified enzyme, suggesting a conformational change in association with the reductive activation. For the purpose of gaining more information on the electronic properties of this unique H cluster and to understand further the reductive activation process, variable-temperature and variable-field Mossbauer spectroscopy has been used to characterize the Fe-S clusters in D. vulgaris hydrogenase poised at different redox states generated during a reductive titration, and in the GO-reacted enzyme. The data were successfully decomposed into spectral components corresponding to the F and H clusters,and characteristic parameters describing the electronic and magnetic properties of the F and H clusters were obtained. Consistent with the X-ray crystallographic results, the spectra of the H cluster can be understood as originating from an exchange coupled [4Fe-4S] - [2Fe] system. In particular, detailed analysis of the data reveals that the reductive activation begins with reduction of the [4Fe-4S]H cluster from the 2+ to the If state, followed by transfer of the reducing equivalent from the [4Fe-4S]H subcluster to the binuclear [2Fe]H subcluster. The results also reveal that binding of exogenous CO to the H cluster affects significantly the exchange coupling between the [4Fe-4S]H and the [2Fe]H subclusters. Implication of such a CO binding effect is discussed.

Substitution of murine ferrochelatase glutamate-287 with glutamine or alanine leads to porphyrin substrate-bound variants, Franco, R., Pereira A. S., Tavares P., Mangravita A., Barber M. J., Moura I., and Ferreira G. C. , BIOCHEMICAL JOURNAL, Volume {356}, Number {1}, p.{217-222}, (2001) Abstract

Ferrochelatase (EC 4.99.1.1) is the terminal enzyme of the haem biosynthetic pathway and catalyses iron chelation into the protoporphyrin IX ring. Glutamate-287 (E287) of murine mature ferrochelatase is a conserved residue in all known sequences of ferrochelatase, is present at the active site of the enzyme, as inferred from the Bacillus subtilis ferrochelatase three-dimensional structure, and is critical for enzyme activity. Substitution of E287 with either glutamine (Q) or alanine (A) yielded variants with lower enzymic activity than that of the wild-type ferrochelatase and with different absorption spectra from the wild-type enzyme. In contrast to the wild-type enzyme, the absorption spectra of the variants indicate that these enzymes, as purified, contain protoporphyrin IX. Identification and quantification of the porphyrin bound to the E287-directed variants indicate that approx. 80% of the total porphyrin corresponds to protoporphyrin IX. Significantly, rapid stopped-flow experiments of the E287A and E287Q Variants demonstrate that reaction with Zn2+ results in the formation of bound Zn-protoporphyrin IX, indicating that the endogenously bound protoporphyrin IX can be used as a substrate. Taken together, these findings suggest that the structural strain imposed by ferrochelatase on the porphyrin substrate as a critical step in the enzyme catalytic mechanism is also accomplished by the E287A and E287Q variants, but without the release of the product. Thus E287 in murine ferrochelatase appears to be critical For the catalytic process by controlling the release of the product.

2000
A novel type of catalytic copper cluster in nitrous oxide reductase, Brown, K., Tegoni M., Prudencio M., Pereira A. S., Besson S., Moura J. J., Moura I., and Cambillau C. , Nature Structural Biology, Apr, Volume {7}, Number {3}, 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA, p.{191-195}, (2000) Abstract

Nitrous oxide (N(2)O) is a greenhouse gas, the third most significant contributor to global warming. As a key process for N(2)O elimination from the biosphere, N(2)O reductases catalyze the two-electron reduction of N(2)O to N(2). These 2 x 65 kDa copper enzymes are thought to contain a CuA electron entry site, similar to that of cytochrome c oxidase, and a CuZ catalytic center. The copper anomalous signal was used to solve the crystal structure of N(2)O reductase from Pseudomonas nautica by multiwavelength anomalous dispersion, to a resolution of 2.4 Angstrom. The structure reveals that the CuZ center belongs to a new type of metal cluster, in which four copper ions are liganded by seven histidine residues. N(2)O binds to this center via a single copper ion. The remaining copper ions might act as an electron reservoir, assuring a fast electron transfer and avoiding the formation of dead-end products.

loading