[ Publications ]

Export 26 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Comparative electrochemical study of superoxide reductases, Cordas, Cristina M., Raleiras Patricia, Auchère Françoise, Moura Isabel, and Moura Jose J. G. , Eur. Biophys. J., Dec 06, Volume 41, Number 2, p.209-215, (2011) AbstractWebsite

... CM Cordas (&) Á P . Raleiras Á F . Auche`re Á I. Moura Á JJG Moura ... de Quımica, Universidade Nova de Lisboa, 2859-516 Caparica, Portugal e-mail: cristina. cordas @dq.fct ... Present Address: P . Raleiras Department of Photochemistry and Molecular Science, PO Box 523, 75120 ...

2010
Short communication: Effect of kefir grains on proteolysis of major milk proteins, Ferreira, I. M. P. L. V., Pinho O., Monteiro D., Faria S., Cruz S., Perreira A., Roque A. C., and Tavares P. , JOURNAL OF DAIRY SCIENCE, Feb, Volume {93}, Number {1}, p.{27-31}, (2010) Abstract

The effect of kefir grains on the proteolysis of major milk proteins in milk kefir and in a culture of kefir grains in pasteurized cheese whey was followed by reverse phase-HPLC analysis. The reduction of kappa-, alpha-, and beta-caseins (CN), alpha-lactalbumin (alpha-LA), and beta-lactoglobulin (beta-LG) contents during 48 and 90 h of incubation of pasteurized milk (100 mL) and respective cheese whey with kefir grains (6 and 12 g) at 20 degrees C was monitored. Significant proteolysis of alpha-LA and kappa-, alpha-, and beta-caseins was observed. The effect of kefir amount (6 and 12 g/100 mL) was significant for alpha-LA and alpha- and beta-CN. alpha-Lactalbumin and beta-CN were more easily hydrolyzed than alpha-CN. No significant reduction was observed with respect to beta-LG concentration for 6 and 12 g of kefir in 100 mL of milk over 48 h, indicating that no significant proteolysis was carried out. Similar results were observed when the experiment was conducted over 90 h. Regarding the cheese whey kefir samples, similar behavior was observed for the proteolysis of alpha-LA and beta-LG: alpha-LA was hydrolyzed between 60 and 90% after 12 h (for 6 and 12 g of kefir) and no significant beta-LG proteolysis occurred. The proteolytic activity of lactic acid bacteria and yeasts in kefir community was evaluated. Kefir milk prepared under normal conditions contained peptides from proteolysis of alpha-LA and kappa-, alpha-, and beta-caseins. Hydrolysis is dependent on the kefir: milk ratio and incubation time. beta-Lactoglobulin is not hydrolyzed even when higher hydrolysis time is used. Kefir grains are not appropriate as adjunct cultures to increase beta-LG digestibility in whey-based or whey-containing foods.

2009
Isolation and characterization of a new Cu-Fe protein from Desulfovibrio aminophilus DSM12254, Rivas, Maria G., Mota Cristiano S., Pauleta Sofia R., Carepo Marta S. P., Folgosa Filipe, Andrade Susana L. A., Fauque Guy, Pereira Alice S., Tavares Pedro, Calvete Juan J., Moura Isabel, and Moura Jose J. G. , Journal Of Inorganic Biochemistry, Oct, Volume {103}, Number {10, SI}, p.{1314-1322}, (2009) Abstract

The isolation and characterization of a new metalloprotein containing Cu and Fe atoms is reported. The as-isolated Cu-Fe protein shows an UV-visible spectrum with absorption bands at 320 nm, 409 nm and 615 nm. Molecular mass of the native protein along with denaturating electrophoresis and mass spectrometry data show that this protein is a multimer consisting of 14 +/- 1 subunits of 15254.3 +/- 7.6 Da. Mossbauer spectroscopy data of the as-isolated Cu-Fe protein is consistent with the presence of [2Fe-2S](2+) centers. Data interpretation of the dithionite reduced protein suggest that the metallic cluster could be constituted by two ferromagnetically coupled [2Fe-2S](+) spin delocalized pairs. The biochemical properties of the Cu-Fe protein are similar to the recently reported molybdenum resistance associated protein from Desulfovibrio, D. alaskensis. Further-more, a BLAST search from the DNA deduced amino acid sequence shows that the Cu-Fe protein has homology with proteins annotated as zinc resistance associated proteins from Desulfovibrio, D. alaskensis, D. vulgaris Hildenborough, D. piger ATCC 29098. These facts suggest a possible role of the Cu-Fe protein in metal tolerance. (C) 2009 Published by Elsevier Inc.

Molybdenum Induces the Expression of a Protein Containing a New Heterometallic Mo-Fe Cluster in Desulfovibrio alaskensis, Rivas, Maria G., Carepo Marta S. P., Mota Cristiano S., Korbas Malgorzata, Durand Marie-Claire, Lopes Ana T., Brondino Carlos D., Pereira Alice S., George Graham N., Dolla Alain, Moura Jose J. G., and Moura Isabel , Biochemistry, Volume {48}, Number {5}, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, p.{873-882}, (2009) Abstract

The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmemtal conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 mu M molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.

2007
Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates, Ferreira, I. M. P. L. V., Pinho O., Mota M. V., Tavares P., Pereira A., Goncalves M. P., Torres D., Rocha C., and Teixeira J. A. , INTERNATIONAL DAIRY JOURNAL, Jun, Volume {17}, Number {5}, p.{481-487}, (2007) Abstract

This study describes the characterisation of whey protein hydrolysates obtained from tryptic hydrolysis to assess their application as ingredients with angiotensin-converting-enzyme (ACE) inhibitory action. The levels of a-lactalbumin (alpha-la) and P-lactoglobulin (beta-lg) remaining after hydrolysis were quantified. Peptides were separated by RP-HPLC, and Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR), the most potent beta-lg-derived ACE-inhibitory peptide was monitored. A correlation curve was established for the production of this peptide as a function of hydrolysis time. Heat-induced gelation of hydrolysates was studied by small-deformation rheology. The gelation times and the strength of the final gels were highly dependent on the degree of hydrolysis. Smaller peptides liberated by hydrolysis contributed to the inability of whey protein hydrolysates to gel. (c) 2006 Elsevier Ltd. All rights reserved.