[ Publications ]

Export 28 results:
Sort by: Author Title Type [ Year  (Desc)]
2009
Molybdenum Induces the Expression of a Protein Containing a New Heterometallic Mo-Fe Cluster in Desulfovibrio alaskensis, Rivas, Maria G., Carepo Marta S. P., Mota Cristiano S., Korbas Malgorzata, Durand Marie-Claire, Lopes Ana T., Brondino Carlos D., Pereira Alice S., George Graham N., Dolla Alain, Moura Jose J. G., and Moura Isabel , Biochemistry, Volume {48}, Number {5}, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, p.{873-882}, (2009) Abstract

The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmemtal conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 mu M molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.

2008
A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774, Gavel, Olga Yu, Bursakov Sergey A., Di Rocco Giulia, Trincao Jose, Pickering Ingrid J., George Graham N., Calvete Juan J., Shnyrov Valery L., Brondino Carlos D., Pereira Alice S., Lampreia Jorge, Tavares Pedro, Moura Jose J. G., and Moura Isabel , Journal Of Inorganic Biochemistry, Volume {102}, Number {5-6}, p.{1380-1395}, (2008) Abstract

Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the ``LID'' domain. The sequence (129)Cys-X(5)-His-X(15)-Cys-X(2)-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain. (C) 2008 Elsevier Inc. All rights reserved.

2007
Conformations generated during turnover of the Azotobacter vinelandii nitrogenase MoFe protein and their relationship to physiological function, Fisher, Karl, Lowe David J., Tavares Pedro, Pereira Alice S., Huynh Boi Hanh, Edmondson Dale, and Newton William E. , Journal Of Inorganic Biochemistry, Nov, Volume {101}, Number {11-12}, p.{1649-1656}, (2007) Abstract

Various S = 3/2 EPR signals elicited from wild-type and variant Azotobacter vinelandii nitrogenase MoFe proteins appear to reflect different conformations assumed by the FeMo-cofactor with different protonation states. To determine whether these presumed changes in protonation and conformation reflect catalytic capacity, the responses (particularly to changes in electron flux) of the alpha H195Q, alpha H195N, and alpha Q191 K variant MoFe proteins (where His at position 195 in the alpha subunit is replaced by Gln/Asn or Gln at position alpha-191 by Lys), which have strikingly different substrate-reduction properties, were studied by stopped-flow or rapid-freeze techniques. Rapid-freeze EPR at low electron flux (at 3-fold molar excess of wild-type Fe protein) elicited two transient FeMo-cofactor-based EPR signals within 1 s of initiating turnover under N-2 with the alpha H195Q and alpha H195N variants, but not with the alpha Q191K variant. No EPR signals attributable to P cluster oxidation were observed for any of the variants under these conditions. Furthermore, during turnover at low electron flux with the wild-type, alpha H195Q or alpha H195N MoFe protein, the longer-time 430-nm absorbance increase, which likely reflects P cluster oxidation, was also not observed (by stopped-flow spectrophotometry); it did, however, occur for all three MoFe proteins under higher electron flux. No 430-nm absorbance increase occurred with the alpha Q191K variant, not even at higher electron flux. This putative lack of involvement of the P cluster in electron transfer at low electron flux was confirmed by rapid-freeze Fe-57 Mossbauer spectroscopy, which clearly showed FeMo-factor reduction without P cluster oxidation. Because the wild-type, alpha H195Q and alpha H195N MoFe proteins can bind N-2, but alpha Q195K cannot, these results suggest that P cluster oxidation occurs only under high electron flux as required for N-2 reduction. (C) 2007 Elsevier Inc. All rights reserved.

2004
Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas, Bursakov, S. A., Gavel O. Y., Di Rocco G., Lampreia J., Calvete J., Pereira A. S., Moura J. J. G., and Moura I. , Journal Of Inorganic Biochemistry, Jun, Volume {98}, Number {5}, 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA, p.{833-840}, (2004) Abstract

An orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S2MoS2CuS2MoS2] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS42- moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed. (C) 2003 Elsevier Inc. All rights reserved.

2002
Stoichiometric production of hydrogen peroxide and parallel formation of ferric multimers through decay of the diferric-peroxo complex, the first detectable intermediate in ferritin mineralization, Jameson, GNL, Jin W., Krebs C., Perreira AS, Tavares P., Liu XF, Theil EC, and Huynh B. H. , Biochemistry, Volume {41}, Number {45}, p.{13435-13443}, (2002) Abstract

The catalytic step that initiates formation of the ferric oxy-hydroxide mineral core in the central cavity of H-type ferritin involves rapid oxidation of ferrous ion by molecular oxygen (ferroxidase reaction) at a binuclear site (ferroxidase site) found in each of the 24 subunits. Previous investigators have shown that the first detectable reaction intermediate of the ferroxidase reaction is a diferric-peroxo intermediate, F-peroxo, formed within 25 ms, which then leads to the release of H2O2 and formation of ferric mineral precursors. The stoichiometric relationship between F-peroxo, H2O2, and ferric mineral precursors, crucial to defining the reaction pathway and mechanism, has now been determined. To this end, a horseradish peroxidase-catalyzed spectrophotometric method was used as an assay for H2O2. By rapidly mixing apo M ferritin from frog, Fe2+, and O-2 and allowing the reaction to proceed for 70 ms when F-peroxo has reached its maximum accumulation, followed by spraying the reaction mixture into the H2O2 assay solution, we were able to quantitatively determine the amount of H2O2 produced during the decay of F-peroxo. The correlation between the amount of H2O2 released with the amount of F-peroxo accumulated at 70 ms determined by Mossbauer spectroscopy showed that F-peroxo decays into H2O2 with a stoichiometry of 1 F-peroxo:H2O2. When the decay of F-peroxo was monitored by rapid freeze-quench Mossbauer spectroscopy, multiple diferric mu-oxo/mu-hydroxo complexes and small polynuclear ferric clusters were found to form at rate constants identical to the decay rate of F-peroxo. This observed parallel formation of multiple products (H2O2, diferric complexes, and small polynuclear clusters) from the decay of a single precursor (F-peroxo) provides useful mechanistic insights into ferritin mineralization and demonstrates a flexible ferroxidase site.