[ Publications ]

Export 28 results:
Sort by: Author Title Type [ Year  (Desc)]
1994
SPECTROSCOPIC PROPERTIES OF DESULFOFERRODOXIN FROM DESULFOVIBRIO-DESULFURICANS (ATCC-27774), Tavares, P., Ravi N., Moura J. J. G., Legall J., Huang Y. H., Crouse B. R., Johnson M. K., Huynh B. H., and Moura I. , Journal Of Biological Chemistry, Volume {269}, Number {14}, p.{10504-10510}, (1994) Abstract

Desulfoferrodoxin, a non-heme iron protein, was purified previously from extracts of Desulfovibrio desulfuricans (ATCC 27774) (Moura, I., Tavares, P., Moura, J. J. G., Ravi, N., Huynh, B. H., Liu, M.-Y., and LeGall, J. (1990) J. Biol. Chem. 265, 21596-21602). The as-isolated protein displays a pink color (pink form) and contains two mononuclear iron sites in different oxidation states: a ferric site (center I) with a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from Desulfovibrio gigas and a ferrous site (center II) octahedrally coordinated with predominantly nitrogen/ oxygen-containing ligands. A new form of desulfoferrodoxin which displays a gray color (gray form) has now been purified. Optical, electron paramagnetic resonance (EPR), and Mossbauer data of the gray desulfoferrodoxin indicate that both iron centers are in the high-spin ferric states. In addition to the EPR signals originating from center I at g = 7.7, 5.7, 4.1, and 1.8, the gray form of desulfoferrodoxin exhibits a signal atg = 4.3 and a shoulder at g = 9.6, indicating a high-spin ferric state with E/D approximate to 1/3 for the oxidized center II. Redox titrations of the gray form of the protein monitored by optical spectroscopy indicate midpoint potentials of +4 +/- 10 and +240 +/- 10 mV for centers I and II, respectively. Mossbauer spectra of the gray form of the protein are consistent with the EPR finding that both centers are high-spin ferric and can be analyzed in terms of the EPR-determined spin Hamiltonian parameters. The Mossbauer parameters for both the ferric and ferrous forms of center II are indicative of a mononuclear high spin iron site with octahedral coordination and predominantly nitrogen/oxygen-containing ligands. Resonance Raman studies confirm the structural similarity of center I and the distorted tetrahedral FeS4 center in desulforedoxin and provide evidence for one or two cysteinyl-S ligands for center II. On the basis of the resonance Raman results, the 635 nm absorption band that is responsible for the gray color of the oxidized protein is assigned to a cysteinyl-S --> Fe(III) charge transfer transition localized on center II. The novel properties and possible function of center II are discussed in relation to those of mononuclear iron centers in other enzymes.

1992
DIRECT SPECTROSCOPIC EVIDENCE FOR THE PRESENCE OF A 6FE CLUSTER IN AN IRON-SULFUR PROTEIN ISOLATED FROM DESULFOVIBRIO-DESULFURICANS (ATCC-27774), Moura, I., Tavares P., Moura J. J. G., Ravi N., Huynh B. H., Liu M. Y., and Legall J. , Journal Of Biological Chemistry, Volume {267}, Number {7}, p.{4489-4496}, (1992) Abstract

A novel iron-sulfur protein was purified from the extract of Desulfovibrio desulfuricans (ATCC 27774) to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a monomer of 57 kDa molecular mass. It contains comparable amounts of iron and inorganic labile sulfur atoms and exhibits an optical spectrum typical of iron-sulfur proteins with maxima at 400, 305, and 280 nm. Mossbauer data of the as-isolated protein show two spectral components, a paramagnetic and a diamagnetic, of equal intensity. Detailed analysis of the paramagnetic component reveals six distinct antiferromagnetically coupled iron sites, providing direct spectroscopic evidence for the presence of a 6Fe cluster in this newly purified protein. One of the iron sites exhibits parameters (DELTA-E(Q) = 2.67 +/- 0.03 mm/s and delta = 1.09 +/- 0.02 mm/s at 140 K) typical for high spin ferrous ion; the observed large isomer shift indicates an iron environment that is distinct from the tetrahedral sulfur coordination commonly observed for the iron atoms in iron-sulfur clusters and is consistent with a penta- or hexacoordination containing N and/or O ligands. The other five iron sites are most probably high spin ferric. Three of them show parameters characteristic for tetrahedral sulfur coordination. In correlation with the EPR spectrum of the as-purified protein which shows a resonance signal at g = 15.3 and a group of signals between g = 9.8 and 5.4, this 6Fe cluster is assigned to an unusual spin state of 9/2 with zero field splitting parameters D = -1.3 cm-1 and E/D = 0.062. Other EPR signals attributable to minor impurities are also observed at the g = 4.3 and 2.0 regions. The diamagnetic Mossbauer component represents a second iron cluster, which, upon reduction with dithionite, displays an intense S = 1/2 EPR signal with g values at 2.00, 1.83, and 1.31. In addition, an EPR signal of the S = 3/2 type is also observed for the dithionite-reduced protein.

1990
PURIFICATION AND CHARACTERIZATION OF DESULFOFERRODOXIN - A NOVEL PROTEIN FROM DESULFOVIBRIO-DESULFURICANS (ATCC-27774) AND FROM DESULFOVIBRIO-VULGARIS (STRAIN HILDENBOROUGH) THAT CONTAINS A DISTORTED RUBREDOXIN CENTER AND A MONONUCLEAR FERROUS CENTER, Moura, I., Tavares P., Moura J. J. G., Ravi N., Huynh B. H., Liu M. Y., and Legall J. , Journal Of Biological Chemistry, Volume {265}, Number {35}, p.{21596-21602}, (1990) Abstract
n/a
loading