[ Publications ]

Export 19 results:
Sort by: Author Title Type [ Year  (Desc)]
2003
Ca2+ and the bacterial peroxidases: the cytochrome c peroxidase from Pseudomonas stutzeri, Timóteo, C. G., Tavares P., Goodhew C. F., Duarte L. C., Jumel K., Girio F. M. F., Harding S., Pettigrew G. W., and Moura I. , JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, Feb, Volume {8}, Number {1-2}, p.{29-37}, (2003) Abstract

The production of cytochrome c peroxidase (CCP) from Pseudomonas (Ps.) stutzeri (ATCC 11607) was optimized by adjusting the composition of the growth medium and aeration of the culture. The protein was isolated and characterized biochemically and spectroscopically in the oxidized and mixed valence forms. The activity of Ps. stutzeri CCP was studied using two different ferrocytochromes as electron donors: Ps. stutzeri cytochrome C-551 (the physiological electron donor) and horse heart cytochrome c. These electron donors interact differently with Ps. stutzeri CCP, exhibiting different ionic strength dependence. The CCP from Paracoccus (Pa.) denitrificans was proposed to have two different Ca2+ binding sites: one usually occupied (site I) and the other either empty or partially occupied in the oxidized enzyme (site II). The Ps. stutzeri enzyme was purified in a form with tightly bound Ca2+. The affinity for Ca2+ in the mixed valence enzyme is so high that Ca2+ returns to it from the EGTA which was added to empty the site in the oxidized enzyme. Molecular mass determination by ultracentrifugation and behavior on gel filtration chromatography have revealed that this CCP is isolated as an active dimer, in contrast to the Pa. denitrificans CCP which requires added Ca2+ for formation of the dimer and also for activation of the enzyme. This is consistent with the proposal that Ca2+ in the bacterial peroxidases influences the monomer/dimer equilibrium and the transition to the active form of the enzyme. Additional Ca2+ does affect both the kinetics of oxidation of horse heart cytochrome c (but not cytochrome C-551) and higher aggregation states of the enzyme. This suggests the presence of a superficial Ca2+ binding site of low affinity.

2001
Cloning of a novel Mo-Cu containing protein from Desulfovibrio.gigas, Di Rocco, G., Pereira A. S., Bursakov S. A., Gavel O. Y., Rusnak F., Lampreia J., Moura J. J. G., and Moura I. , Journal Of Inorganic Biochemistry, Aug, Volume {86}, Number {1}, 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 USA, p.{202}, (2001) Abstract
n/a
2000
Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617, Prudencio, M., Pereira A. S., Tavares P., Besson S., Cabrito I., Brown K., Samyn B., Devreese B., Van Beeumen J., Rusnak F., Fauque G., Moura J. J. G., Tegoni M., Cambillau C., and Moura I. , Biochemistry, Volume {39}, Number {14}, p.{3899-3907}, (2000) Abstract

The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named CUA and Cut. Cut could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)= 2.015, A(x) = 1.5 mT, g(y) = 2.071, A(y) = 2 mT, g(z) = 2.138, A(z) = 7 mT) and a strong absorption at similar to 640 nm. Cu-A can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x) g(y) = 2.021, A(x) = A(y) = 0 T, g(z) =0.178, A(z) = 4 mT) and absorption bands at 480, 540, and similar to 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the CuA center. In form A, CUA is predominantly oxidized (S = 1/2, Cu1.5+-Cu1.5+), while in form B it is mostly in the one-electron reduced state (S = 0, Cu1+-Cu1+). In both forms, Cu-Z remains reduced (S = 1/2). Complete crystallographic data at 2.4 Angstrom indicate that Cu-A is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu-Z is a novel tetracopper cluster [Brown, K., et ai. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.

1999
Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas, Almendra, M. J., Brondino C. D., Gavel O., Pereira A. S., Tavares P., Bursakov S., Duarte R., Caldeira J., Moura J. J. G., and Moura I. , Biochemistry, Volume {38}, Number {49}, p.{16366-16372}, (1999) Abstract

An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein, Selenium was not detected. The UV/visible absorption spectrum of D, gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mossbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with Fe-57 and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.

1998
Generation of a mixed-valent Fe(III)Fe(IV) form of intermediate Q in the reaction cycle of soluble methane monooxygenase, an analog of intermediate X in ribonucleotide reductase R2 assembly, Valentine, AM, Tavares P., Pereira A. S., Davydov R., Krebs C., Koffman BM, Edmondson D. E., Huynh B. H., and Lippard SJ , Journal Of The American Chemical Society, Volume {120}, Number {9}, p.{2190-2191}, (1998) Abstract
n/a