[ Publications ]

Export 25 results:
Sort by: Author [ Title  (Asc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas, Bursakov, S. A., Gavel O. Y., Di Rocco G., Lampreia J., Calvete J., Pereira A. S., Moura J. J. G., and Moura I. , Journal Of Inorganic Biochemistry, Jun, Volume {98}, Number {5}, 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA, p.{833-840}, (2004) Abstract

An orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S2MoS2CuS2MoS2] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS42- moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed. (C) 2003 Elsevier Inc. All rights reserved.

C
Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase, Conrath, Katja, Pereira Alice S., Martins Carlos E., Timoteo Cristina G., Tavares Pedro, Spinelli Silvia, Kinne Joerg, Flaudrops Christophe, Cambillau Christian, Muyldermans Serge, Moura Isabel, Moura Jose J. G., Tegoni Mariella, and Desmyter Aline , PROTEIN SCIENCE, Apr, Volume {18}, Number {3}, p.{619-628}, (2009) Abstract

Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies (TM)). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.

Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel, Pereira, A. S., Franco R., Feio M. J., Pinto C., Lampreia J., Reis M. A., Calvete J., Moura I., Beech I., Lino A. R., and Moura J. J. G. , Biochemical And Biophysical Research Communications, Volume {221}, Number {2}, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495, p.{414-421}, (1996) Abstract

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed. (C) 1996 Academic Press, Inc.

Comparative electrochemical study of superoxide reductases, Cordas, Cristina M., Raleiras Patricia, Auchère Françoise, Moura Isabel, and Moura Jose J. G. , Eur. Biophys. J., Dec 06, Volume 41, Number 2, p.209-215, (2011) AbstractWebsite

... CM Cordas (&) Á P . Raleiras Á F . Auche`re Á I. Moura Á JJG Moura ... de Quımica, Universidade Nova de Lisboa, 2859-516 Caparica, Portugal e-mail: cristina. cordas @dq.fct ... Present Address: P . Raleiras Department of Photochemistry and Molecular Science, PO Box 523, 75120 ...

Conversion of desulforedoxin into a rubredoxin center, Yu, L., Kennedy M., Czaja C., Tavares P., Moura J. J. G., Moura I., and Rusnak F. , Biochemical And Biophysical Research Communications, Volume {231}, Number {3}, p.{679-682}, (1997) Abstract

Rubredoxin and desulforedoxin both contain an Fe(S-Cys)(4) center, However the spectroscopic properties of the center in desulforedoxin differ from rubredoxin, These differences arise from a distortion of the metal site hypothesized to result from adjacent cysteine residues in the primary sequence of desulforedoxin. Two desulforedoxin mutants were generated in which either a G or P-V were inserted between adjacent cysteines. Both mutants exhibited optical spectra with maxima at 278, 345, 380, 480, and 560 nm while the low temperature X-band EPR spectra indicated high-spin Fe3+ ions with large rhombic distortions (E/D = 0.21-0.23). These spectroscopic properties are distinct from wild type desulforedoxin and virtually identical to rubredoxin. (C) 1997 Academic Press.