[ Publications ]

Export 16 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Synthesis of catecholamine conjugates with nitrogen-centered bionucleophiles, Siopa, Filipa, Pereira Alice S., Ferreira Luisa M., Matilde Marques M., and Branco Paula S. , BIOORGANIC CHEMISTRY, Oct, Volume {44}, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA, p.{19-24}, (2012) Abstract

The enzymatic (tyrosinase) and chemical (NaIO4, Ag2O or Fremys's salt) oxidation of biologically relevant catecholamines, such as dopamine (DA), N-acetyldopamine (NADA) and the Ecstasy metabolites (alpha-MeDA and N-Me-alpha-MeDA) generates the corresponding o-quinone which can be trapped with nitrogen bionucleophiles such as N-acetyl-histidine and imidazole in a regioselective reaction that takes place predominantly at the 6-position of the catecholamine. (C) 2012 Elsevier Inc. All rights reserved.

2009
Molybdenum Induces the Expression of a Protein Containing a New Heterometallic Mo-Fe Cluster in Desulfovibrio alaskensis, Rivas, Maria G., Carepo Marta S. P., Mota Cristiano S., Korbas Malgorzata, Durand Marie-Claire, Lopes Ana T., Brondino Carlos D., Pereira Alice S., George Graham N., Dolla Alain, Moura Jose J. G., and Moura Isabel , Biochemistry, Volume {48}, Number {5}, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, p.{873-882}, (2009) Abstract

The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmemtal conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 mu M molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.

2008
A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774, Gavel, Olga Yu, Bursakov Sergey A., Di Rocco Giulia, Trincao Jose, Pickering Ingrid J., George Graham N., Calvete Juan J., Shnyrov Valery L., Brondino Carlos D., Pereira Alice S., Lampreia Jorge, Tavares Pedro, Moura Jose J. G., and Moura Isabel , Journal Of Inorganic Biochemistry, Volume {102}, Number {5-6}, p.{1380-1395}, (2008) Abstract

Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the ``LID'' domain. The sequence (129)Cys-X(5)-His-X(15)-Cys-X(2)-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain. (C) 2008 Elsevier Inc. All rights reserved.

2004
Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas, Bursakov, S. A., Gavel O. Y., Di Rocco G., Lampreia J., Calvete J., Pereira A. S., Moura J. J. G., and Moura I. , Journal Of Inorganic Biochemistry, Jun, Volume {98}, Number {5}, 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA, p.{833-840}, (2004) Abstract

An orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S2MoS2CuS2MoS2] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS42- moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed. (C) 2003 Elsevier Inc. All rights reserved.

Structural basis for the mechanism of Ca2+ activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617, Dias, J. M., Alves T., Bonifacio C., Pereira A. S., Trincao J., Bourgeois D., Moura I., and Romão M. J. , Structure, Jul, Volume {12}, Number {6}, 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA, p.{961-973}, (2004) Abstract

Cytochrome c peroxidase (CCP) catalyses the reduction of H2O2 to H2O, an important step in the cellular detoxification process. The crystal structure of the di-heme CCP from Pseudomonas nautica 617 was obtained in two different conformations in a redox state with the electron transfer heme reduced. Form IN, obtained at pH 4.0, does not contain Ca2+ and was refined at 2.2 Angstrom resolution. This inactive form presents a closed conformation where the peroxidatic heme adopts a six-ligand coordination, hindering the peroxidatic reaction from taking place. Form OUT is Ca2+ dependent and was crystallized at pH 5.3 and refined at 2.4 Angstrom resolution. This active form shows an open conformation, with release of the distal histidine (His71) ligand, providing peroxide access to the active site. This is the first time that the active and inactive states are reported for a di-heme peroxidase.