Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
K
Kordestani, N, Rudbari HA, Fernandes AR, Raposo LR, Baptista PV, Ferreira D, Bruno G, Bella G, Scopelliti R, Braun JD, Herbert DE, Blacque O.  2020.  Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes, 2020. ACS Comb Sci. 22(2):89-99. AbstractWebsite

A series of Cu(diimine)(X-sal)(NO3) complexes, where the diimine is either 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) and X-sal is a monoanionic halogenated salicylaldehyde (X = Cl, Br, I, or H), have been synthesized and characterized by elemental analysis and X-ray crystallography. Penta-coordinate geometries copper(II) were observed for all cases. The influence of the diimine coligands and different halogen atoms on the antiproliferative activities toward human cancer cell lines have been investigated. All Cu(II) complexes were able to induce a loss of A2780 ovarian carcinoma cell viability, with phen derivatives more active than bpy derivatives. In contrast, no in vitro antiproliferative effects were observed against the HCT116 colorectal cancer cell line. These cytotoxicity differences were not due to a different intracellular concentration of the complexes determined by inductively coupled plasma atomic emission spectroscopy. A small effect of different halogen substituents on the phenolic ring was observed, with X = Cl being the most highly active toward A2780 cells among the phen derivatives, while X = Br presented the lowest IC50 in A2780 cells for bpy analogs. Importantly, no reduction in normal primary fibroblasts cell viability was observed in the presence of bpy derivatives (IC50 > 40 muM). Mechanistically, complex 1 seems to induce a stronger apoptotic response with a higher increase in mitochondrial membrane depolarization and an increased level of intracellular reactive oxygen species (ROS) compared to complex 3. Together, these data and the low IC50 compared to cisplatin in A2780 ovarian carcinoma cell line demonstrate the potential of these bpy derivatives for further in vivo studies.

Kourmentza, C, Araujo D, Sevrin C, Roma-Rodriques C, Lia Ferreira J, Freitas F, Dionisio M, Baptista PV, Fernandes AR, Grandfils C, Reis MAM.  2019.  Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product, 2019. Bioresour Technol. 281:31-40. AbstractWebsite

While screening for polyhydroxyalkanoate (PHA) producing strains, using glycerol rich by-product as carbon source, it was observed that extracellular polymers were also secreted into the culture broth. The scope of this study was to characterize both intracellular and extracellular polymers, produced by Pseudomonas putida NRRL B-14875 and Pseudomonas chlororaphis DSM 50083, mostly focusing on those novel extracellular polymers. It was found that they fall into the class of bioemulsifiers (BE), as they showed excellent emulsion stability against different hydrocarbons/oils at various pH conditions, temperature and salinity concentrations. Cytotoxicity tests revealed that BE produced by P. chlororaphis inhibited the growth of highly pigmented human melanoma cells (MNT-1) by 50% at concentrations between 150 and 200mug/mL, while no effect was observed on normal skin primary keratinocytes and melanocytes. This is the first study reporting mcl-PHA production by P. putida NRRL B-14785 and bioemulsifier production from both P. putida and P. chlororaphis strains.