Publications

Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
2021
Sine, A, Pimentel M, Nunes S.  2021.  Punching Shear Tests on RC Flat Slabs Strengthened with an UHPFRC Layer, 2021. fib Symposium 2021. , Lisbonsine-fib2021_169_punching.pdf
Pimentel, M, Sine A, Nunes S.  2021.  Resistência ao punçoamento de lajes fungiformes reforçadas com UHPFRC, 2021. Reabilitar & Betão Estrutural 2020. , Lisbonrbe2020_artigo_puncoamento_1.pdf
PEREIRA, JOÃOFILIPESOUSA.  2021.  CARATERIZAÇÃO DE UMA MISTURA COMERCIAL DE UM MATERIAL CIMENTÍCIO DE ULTRAELEVADO DESEMPENHO. Faculty of Engineering of the University of Porto. (Sandra Nunes, Ed.)., Portotese_final_final_signed.pdf
Blazy, J, Nunes S, Sousa C, Pimentel M.  2021.  Development of an HPFRC for Use in Flat Slabs. Fibre Reinforced Concrete: Improvements and Innovations. BEFIB 2020. RILEM Bookseries, vol 30.. :209-220.: Springer
Nunes, S, Pimentel M, Sousa C.  2021.  Mechanical and Fracture Behaviour of an HPFRC. Proceedings of RILEM-fib International Symposium on Fibre Reinforced Concrete, BEFIB2021. , Valencia Abstract

The current paper analyses the mechanical and fracture behaviour of a High-Performance Fibre Reinforced Concrete (HPFRC). An HPFRC was developed in a previous stage aiming to simultaneously, maximise aggregates content, achieve a compressive strength of 90–120 MPa and maintaining self-compactability (SF1+VS2). The benefits of fibres hybridisation (using fibres with lengths of 13, 35 and 60 mm) on flexural strength are investigated using the wedge-splitting test, in order to achieve the highest performance while keeping a relatively low fibre content. The final selected mixture was characterised in terms of workability, compressive strength and modulus of elasticity. Six notched prismatic specimens were subjected to three-point bending tests, according to EN 14651, for classification according to the MC2010. Based on the bending tests data, the simplified linear characteristic tensile stress vs. crack opening displacement relationship of the HPFRC was evaluated according to MC2010 and two other analytical approaches available in the literature.

Sine, AG.  2021.  STRENGTHENING OF REINFORCED CONCRETE ELEMENTS WITH UHPFRC. Faculty of Engineering of the University of Porto. (Mário Pimentel, Sandra Nunes, Américo Dimande, Eds.)., Portostrengthening_of_rc_elements_with_uhpfrc_agsine.pdf
2020
Peixoto, J.  2020.  Tensile behaviour characterization of a high performance fiber reinforced concrete. FEUP - Faculdade de Engenharia da Universidade do Porto. (Sandra Nunes, Amin Abrishambaf, Eds.)., Porto, Portugal: FEUP
2019