Publications

Export 29 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Amaro, Pedro, Sophie Schlesser, Mauro Guerra, Eric-Olivier Le Bigot, Jean-Michel Isac, Pascal Travers, Jose Paulo Santos, Csilla Szabo, Alexandre Gumberidze, and Paul Indelicato. "Absolute Measurement of the Relativistic Magnetic Dipole Transition Energy in Heliumlike Argon." Physical Review Letters 109 (2012): 043005. AbstractWebsite

The 1s2s 3S1 - 1s2 1S0 relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions.

Marques, J. P., P. Indelicato, and F. Parente. "Relativistic multiconfiguration calculations of the 2s22p 2P3/2 level lifetime along the boron isoelectronic sequence." The European Physical Journal D 66 (2012): 324. AbstractWebsite
n/a
Santos, J. P., A. M. Costa, M. C. Martins, F. Parente, and P. Indelicato. "Modeling praseodymium K X-ray lines in an electron beam ion trap." The European Physical Journal D 66 (2012): 202. AbstractWebsite

We study the most important processes for the creation of excited states in He-like through C- like praseodymium ions from the ions ground configurations, leading to the emission of K X-ray lines. Theoretical values for inner-shell excitation and ionization cross sections, transition probabilities and energies for the deexcitation processes, are calculated in the framework of the multi-configuration Dirac- Fock method, including QED corrections. Using these calculated values, a theoretical Kα X-ray spectrum is obtained, which is compared to recent experimental data obtained in the Livermore Super-EBIT electron beam ion trap facility.

Guerra, M., F. Parente, P. Indelicato, and J. P. Santos. "Modified binary encounter Bethe model for electron-impact ionization." International Journal of Mass Spectrometry 313 (2012): 1. AbstractWebsite

Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed.The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells.The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.