Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Dardouri, Maïssa, João Paulo Borges, and Amel Omrani. "Tailoring the morphology of hydroxyapatite particles using a simple solvothermal route." Ceramics International 43 (2017): 3784-3791. AbstractWebsite

Nanometric and sub-micrometric monodispersed hydroxyapatite (HAp) particles with different morphologies (spheres and rods) were synthesized via a simple solvothermal method using Ca(NO3)2·4H2O and P2O5 as starting materials without any requirement to use organic templates. The growth, evolution and purity of the nanoparticles were investigated by controlling the synthesis conditions, including the alkalinity and the temperature of the solvothermal treatment. The increasing of the alkaline ratio results in a great change of the elaborated particles’ morphology that evolved from anisotropic forms (nanorods, sub-micrometric rod) at pH 9, short rod particles at pH 9.5 to spherical ones at higher pH (pH≥10).
Powder X-Ray diffractometry (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and Nitrogen adsorption and desorption studies (BET) were used to characterize the structure and composition of the as-prepared samples.
The thermal analysis of the synthesized particles conducted by differential scanning calorimetry (DSC) shows a good stability for all morphologies with a degradation temperature reaching 1300 °C.

Delgado, Beatriz, Henrique Carrêlo, Mónica V. Loureiro, Ana C. Marques, João Borges Borges, and Maria Teresa Cidade. "Injectable hydrogels with two different rates of drug release based on pluronic/water system filled with poly(ε-caprolactone) microcapsules." Journal of Materials Science 56 (2021): 13416-13428. AbstractWebsite

The present paper regards the preparation and characterization of Pluronic F127 + F68/water/poly (ε-caprolactone) microcapsules (MCs) composite systems for tissue repair. The first part of the work relates to the production of poly(ε-caprolactone) (PCL) MCs via water-in-oil-in-water (W/O/W) double emulsion system combined with solvent evaporation method. The study of different process parameters in the final MCs characteristics and their drug release profile is herein reported. Different percentages of PCL, emulsion stabilizer, and volume proportions of the emulsion constituents have been tested, leading to considerable differences in the MCs size distributions. The selected MCs, containing an aqueous solution of methylene blue (MB) as a model drug, were then used to fill a Pluronic F127 + F68/water system leading to the final composite system (5 and 10 wt % MB loaded PCL MCs). The composite systems were characterised in the second part of the work in terms of its rheological behaviour and drug release performance. They were found to gellify at 30 °C, and present an extended drug release to a total of 18 days. The models that best define the release profiles were also studied, with the release of MB occurring mostly by Fick diffusion and polymer chain relaxation. Pluronic F127 + F68/water/poly (ε-caprolactone) MCs composite system is shown to be a promising injectable system, with two different drug release rates, for tissue repair.

Delgado-Lima, Ana, João Paulo Borges, Isabel Ferreira, and Ana Machado. "Fluorescent and conductive cellulose acetate-based membranes with porphyrins." Materials today Communications 11 (2017): 26-37. AbstractWebsite

The unique properties of electrospun nanofibers combined with functional compounds allow the preparation of novelty materials that can be employed in a wide range of applications. Among a vast number of polymers, Cellulose Acetate (CA) it is considered easy to electrospun and it was employed as the polymeric matrix, where free and iridium-porphyrins were incorporated. Two different solvent systems were employed according to the porphyrin used, and the best dispersion level on both the electrospun solution and the membranes, was achieved with the iridium porphyrin. The nanofibers with this porphyrin also exhibited electrical properties, while the fluorescence was quenched by the presence of specific axial ligands.