Publications

Export 131 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Kinetic and structural studies of aldehyde oxidoreductase from Desulfovibrio gigas reveal a dithiolene-based chemistry for enzyme activation and inhibition by H2O2, Marangon, J., Correia H. D., Brondino C. D., Moura J. J. G., Romao M. J., Gonzalez P. J., and Santos-Silva T. , PLoS One, Volume 8, p.e83234, (2013)
Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role, Gonzalez, P. J., Rivas M. G., Mota C. S., Brondino C. D., Moura I., and Moura J. J. G. , Coord Chem Rev, Volume 257, p.315-331, (2013)
The sulfur-shift: an activation mechanism for periplasmic nitrate reductase and formate dehydrogenase, Cerqueira, N., Fernandes P., González P., Moura J. J. G., and Ramos M. J. , Inorg Chem, Volume 52, p.10766-10772, (2013)
2012
Multifrequency EPR Study of Fe(3+) and Co(2+) in the Active Site of Desulforedoxin, Mathies, G., Almeida R. M., Gast P., Moura J. J., and Groenen E. J. , J Phys Chem B, Volume 116, Issue 24, p.7122-7128, (2012)
Substrate-dependent modulation of the enzymatic catalytic activity: Reduction of nitrate, chlorate and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Marangon, J., de Sousa Paes P. M., Moura I., Brondino C. D., Moura J. J., and González P. J. , Biochim Biophys Acta, Volume 1817, Issue 7, p.1072-1082, (2012)
2011
Gd(III) chelates as NMR probes of protein-protein interactions. Case study: rubredoxin and cytochrome c3, Almeida, R. M., Geraldes C. F., Pauleta S. R., and Moura J. J. , Inorg Chem, Nov 7, Volume 50, Number 21, p.10600-7, (2011) AbstractWebsite

Two cyclen-derived Gd probes, [Gd-DOTAM](3+) and [Gd-DOTP](5-) (DOTAM = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetamide; DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonate)), were assessed as paramagnetic relaxation enhancement (PRE)-inducing probes for characterization of protein-protein interactions. Two proteins, Desulfovibrio gigas rubredoxin and Desulfovibrio gigas cytochrome c(3), were used as model partners. In a (1)H NMR titration it was shown that [Gd-DOTP](5-) binds to cytochrome c(3) near heme IV, causing pronounced PREs, characterized by line width broadenings of the heme methyl resonances at ratios as low as 0.08. A K(d) of 23 +/- 1 muM was calculated based on chemical shift perturbation of selected heme methyl resonances belonging to three different heme groups, caused by allosteric effects upon [Gd-DOTP](5-) binding to cytochrome c(3) at a molar ratio of 2. The other probe, [Gd-DOTAM](3+), caused PREs on a well-defined patch near the metal center of rubredoxin (especially the patch constituted by residues D19-G23 and W37-S45, which broaden beyond detection). This effect was partially reversed for some resonances (C6-Y11, in particular) when cytochrome c(3) was added to this system. Both probes were successful in causing reversible PREs at the partner binding site, thus showing to be good probes to identify partners' binding sites and since the interaction is reversible to structurally characterize protein complexes by better defining the complex interface.

The crystal structure of Cupriavidus necator nitrate reductase in oxidized and partially reduced states, Coelho, C., Gonzalez P. J., Moura J. G., Moura I., Trincao J., and Joao Romao M. , J Mol Biol, May 20, Volume 408, Number 5, p.932-48, (2011) AbstractWebsite

The periplasmic nitrate reductase (NapAB) from Cupriavidus necator is a heterodimeric protein that belongs to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes and catalyzes the reduction of nitrate to nitrite. The protein comprises a large catalytic subunit (NapA, 91 kDa) containing the molybdenum active site plus one [4Fe-4S] cluster, as well as a small subunit (NapB, 17 kDa), which is a diheme c-type cytochrome involved in electron transfer. Crystals of the oxidized form of the enzyme diffracted beyond 1.5 A at the European Synchrotron Radiation Facility. This is the highest resolution reported to date for a nitrate reductase, providing true atomic details of the protein active center, and this showed further evidence on the molybdenum coordination sphere, corroborating previous data on the related Desulfovibrio desulfuricans NapA. The molybdenum atom is bound to a total of six sulfur atoms, with no oxygen ligands or water molecules in the vicinity. In the present work, we were also able to prepare partially reduced crystals that revealed two alternate conformations of the Mo-coordinating cysteine. This crystal form was obtained by soaking dithionite into crystals grown in the presence of the ionic liquid [C(4)mim]Cl(-). In addition, UV-Vis and EPR spectroscopy studies showed that the periplasmic nitrate reductase from C. necator might work at unexpectedly high redox potentials when compared to all periplasmic nitrate reductases studied to date.

Continuous-wave EPR at 275GHz: application to high-spin Fe(3+) systems, Mathies, G., Blok H., Disselhorst J. A., Gast P., van der Meer H., Miedema D. M., Almeida R. M., Moura J. J., Hagen W. R., and Groenen E. J. , J Magn Reson, May, Volume 210, Number 1, p.126-32, (2011) AbstractWebsite

The 275GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275GHz continuous-wave spectra of a 1mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10mM frozen solutions of the protein rubredoxin, which contains Fe(3+) in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.

Effects of molybdate and tungstate on expression levels and biochemical characteristics of formate dehydrogenases produced by Desulfovibrio alaskensis NCIMB 13491, Mota, C. S., Valette O., Gonzalez P. J., Brondino C. D., Moura J. J., Moura I., Dolla A., and Rivas M. G. , J Bacteriol, Jun, Volume 193, Number 12, p.2917-23, (2011) AbstractWebsite

Formate dehydrogenases (FDHs) are enzymes that catalyze the formate oxidation to carbon dioxide and that contain either Mo or W in a mononuclear form in the active site. In the present work, the influence of Mo and W salts on the production of FDH by Desulfovibrio alaskensis NCIMB 13491 was studied. Two different FDHs, one containing W (W-FDH) and a second incorporating either Mo or W (Mo/W-FDH), were purified. Both enzymes were isolated from cells grown in a medium supplemented with 1 muM molybdate, whereas only the W-FDH was purified from cells cultured in medium supplemented with 10 muM tungstate. We demonstrated that the genes encoding the Mo/W-FDH are strongly downregulated by W and slightly upregulated by Mo. Metal effects on the expression level of the genes encoding the W-FDH were less significant. Furthermore, the expression levels of the genes encoding proteins involved in molybdate and tungstate transport are downregulated under the experimental conditions evaluated in this work. The molecular and biochemical properties of these enzymes and the selective incorporation of either Mo or W are discussed.

Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria, Mukhopadhyay, A., Kladova A. V., Bursakov S. A., Gavel O. Y., Calvete J. J., Shnyrov V. L., Moura I., Moura J. J., Romao M. J., and Trincao J. , J Biol Inorg Chem, Jan, Volume 16, Number 1, p.51-61, (2011) AbstractWebsite

Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, three metal ions, zinc, cobalt, and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions (Zn(2+), Zn-AK; Co(2+), Co-AK; and Fe(2+), Fe-AK) bound in its LID domain have been determined by X-ray crystallography to resolutions 1.8, 2.0, and 3.0 A, respectively. The zinc and iron forms of the enzyme were crystallized in space group I222, whereas the cobalt-form crystals were C2. The presence of the metals was confirmed by calculation of anomalous difference maps and by X-ray fluorescence scans. The work presented here is the first report of a structure of a metal-containing AK from a Gram-negative bacterium. The native enzyme was crystallized, and only zinc was detected in the LID domain. Co-AK and Fe-AK were obtained by overexpressing the protein in Escherichia coli. Zn-AK and Fe-AK crystallized as monomers in the asymmetric unit, whereas Co-AK crystallized as a dimer. Nevertheless, all three crystal structures are very similar to each other, with the same LID domain topology, the only change being the presence of the different metal atoms. In the absence of any substrate, the LID domain of all holoforms of AK was present in a fully open conformational state. Normal mode analysis was performed to predict fluctuations of the LID domain along the catalytic pathway.

The mechanism of formate oxidation by metal-dependent formate dehydrogenases, Mota, C. S., Rivas M. G., Brondino C. D., Moura I., Moura J. J., Gonzalez P. J., and Cerqueira N. M. , J Biol Inorg Chem, Dec, Volume 16, Number 8, p.1255-68, (2011) AbstractWebsite

Metal-dependent formate dehydrogenases (Fdh) from prokaryotic organisms are members of the dimethyl sulfoxide reductase family of mononuclear molybdenum-containing and tungsten-containing enzymes. Fdhs catalyze the oxidation of the formate anion to carbon dioxide in a redox reaction that involves the transfer of two electrons from the substrate to the active site. The active site in the oxidized state comprises a hexacoordinated molybdenum or tungsten ion in a distorted trigonal prismatic geometry. Using this structural model, we calculated the catalytic mechanism of Fdh through density functional theory tools. The simulated mechanism was correlated with the experimental kinetic properties of three different Fdhs isolated from three different Desulfovibrio species. Our studies indicate that the C-H bond break is an event involved in the rate-limiting step of the catalytic cycle. The role in catalysis of conserved amino acid residues involved in metal coordination and near the metal active site is discussed on the basis of experimental and theoretical results.

Structural redox control in a 7Fe ferredoxin isolated from Desulfovibrio alaskensis, Grazina, R., de Sousa P. M., Brondino C. D., Carepo M. S., Moura I., and Moura J. J. , Bioelectrochemistry, Aug, Volume 82, Number 1, p.22-8, (2011) AbstractWebsite

The redox behaviour of a ferredoxin (Fd) from Desulfovibrio alaskensis was characterized by electrochemistry. The protein was isolated and purified, and showed to be a tetramer containing one [3Fe-4S] and one [4Fe-4S] centre. This ferredoxin has high homology with FdI from Desulfovibrio vulgaris Miyazaki and Hildenborough and FdIII from Desulfovibrio africanus. From differential pulse voltammetry the following signals were identified: [3Fe-4S](+1/0) (E(0')=-158+/-5mV); [4Fe-4S](+2/+1) (E(0')=-474+/-5mV) and [3Fe-4S](0/-2) (E(0')=-660+/-5mV). The effect of pH on these signals showed that the reduced [3Fe-4S](0) cluster has a pK'(red)(')=5.1+/-0.1, the [4Fe-4S](+2/+1) centre is pH independent, and the [3Fe-4S](0/-2) reduction is accompanied by the binding of two protons. The ability of the [3Fe-4S](0) cluster to be converted into a new [4Fe-4S] cluster was proven. The redox potential of the original [4Fe-4S] centre showed to be dependent on the formation of the new [4Fe-4S] centre, which results in a positive shift (ca. 70mV) of the redox potential of the original centre. Being most [Fe-S] proteins involved in electron transport processes, the electrochemical characterization of their clusters is essential to understand their biological function. Complementary EPR studies were performed.

Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to Improve the selectivity of nitrite biosensing, A.S., Serra, S. Jorge, C. Silveira, J.J.G. Moura, E. Jubete, E. Ochoteco, and G. Almeida M. , Anal Chim Acta, Volume 693, p.41-46, (2011)
Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to improve the selectivity of nitrite biosensing, Serra, A. S., Jorge S. R., Silveira C. M., Moura J. J. G., Jubete E., Ochoteco E., Cabañero G., Grande H., and Almeida M. G. , Analytica Chimica Acta, Volume 693, Number 1–2, p.41-46, (2011) AbstractWebsite
n/a
2010
An efficient non-mediated amperometric biosensor for nitrite determination, Silveira, C. M., Gomes S. P., Araujo A. N., Montenegro M. C., Todorovic S., Viana A. S., Silva R. J., Moura J. J., and Almeida M. G. , Biosens Bioelectron, May 15, Volume 25, Number 9, p.2026-32, (2010) AbstractWebsite

In this paper we propose the construction of a new non-mediated electrochemical biosensor for nitrite determination in complex samples. The device is based on the stable and selective cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans, which has both high turnover and heterogeneous electron transfer rates. In opposition to previous efforts making use of several redox mediators, in this work we exploited the capacity of ccNiR to display a direct electrochemical response when interacting with pyrolytic graphite (PG) surfaces. To enable the analytical application of such bioelectrode the protein was successfully incorporated within a porous silica glass made by the sol-gel process. In the presence of nitrite, the ccNiR/sol-gel/PG electrode promptly displays catalytic currents indicating that the entrapped ccNiR molecules are reduced via direct electron transfer. This result is noteworthy since the protein molecules are caged inside a non-conductive silica network, in the absence of any mediator species or electron relay. At optimal conditions, the minimum detectable concentration is 120 nM. The biosensor sensitivity is 430 mA M(-1) cm(-2) within a linear range of 0.25-50 microM, keeping a stable response up to two weeks. The analysis of nitrites in freshwaters using the method of standard addition was highly accurated.

An NMR structural study of nickel-substituted rubredoxin, Goodfellow, B. J., Duarte I. C., Macedo A. L., Volkman B. F., Nunes S. G., Moura I., Markley J. L., and Moura J. J. , J Biol Inorg Chem, Mar, Volume 15, Number 3, p.409-20, (2010) AbstractWebsite

The Ni(II) and Zn(II) derivatives of Desulfovibrio vulgaris rubredoxin (DvRd) have been studied by NMR spectroscopy to probe the structure at the metal centre. The beta CH(2) proton pairs from the cysteines that bind the Ni(II) atom have been identified using 1D nuclear Overhauser enhancement (NOE) difference spectra and sequence specifically assigned via NOE correlations to neighbouring protons and by comparison with the published X-ray crystal structure of a Ni(II) derivative of Clostridium pasteurianum rubredoxin. The solution structures of DvRd(Zn) and DvRd(Ni) have been determined and the paramagnetic form refined using pseudocontact shifts. The determination of the magnetic susceptibility anisotropy tensor allowed the contact and pseudocontact contributions to the observed chemical shifts to be obtained. Analysis of the pseudocontact and contact chemical shifts of the cysteine H beta protons and backbone protons close to the metal centre allowed conclusions to be drawn as to the geometry and hydrogen-bonding pattern at the metal binding site. The importance of NH-S hydrogen bonds at the metal centre for the delocalization of electron spin density is confirmed for rubredoxins and can be extrapolated to metal centres in Cu proteins: amicyanin, plastocyanin, stellacyanin, azurin and pseudoazurin.

Enhanced Direct Electron Transfer of a Multihemic Nitrite Reductase on Single-walled Carbon Nanotube Modified Electrodes, Silveira, Celia M., Baur Jessica, Holzinger Michael, Moura Jose J. G., Cosnier Serge, and Gabriela Almeida M. , Electroanalysis, Dec, Volume 22, Number 24, p.2973-2978, (2010) AbstractWebsite

Single-walled carbon nanotubes (SWCNTs) deposits on glassy carbon and pyrolytic graphite electrodes have dramatically enhanced the direct electron transfer of the multihemic nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, enabling a 10-fold increase in catalytic currents. At optimal conditions, the sensitivity to nitrite and the maximum current density were 2.4 +/- 0.1 A L mol(-1) cm(-2) and 1500 mu A cm(-2), respectively. Since the biosensor performance decreased over time, laponite clay and electropolymerized amphiphilic pyrrole were tested as protecting layers. Both coating materials increased substantially the bioelectrode stability, which kept about 90% and 60% of its initial sensitivity to nitrite after 20 and 248 days, respectively.

2009
Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis, Kladova, A. V., Gavel O. Y., Mukhopaadhyay A., Boer D. R., Teixeira S., Shnyrov V. L., Moura I., Moura J. J., Romao M. J., Trincao J., and Bursakov S. A. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Sep 1, Volume 65, Number Pt 9, p.926-9, (2009) AbstractWebsite

Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 A resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 A resolution, respectively. Zn(2+)-AK and Fe(2+)-AK crystallized in space group I222 with similar unit-cell parameters, whereas Co(2+)-AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn(2+)-AK and Fe(2+)-AK forms and a dimer was present for the Co(2+)-AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes.

EPR studies of the Mo-enzyme aldehyde oxidoreductase from Desulfovibrio gigas: an application of the Bloch-Wangsness-Redfield theory to a system containing weakly-coupled paramagnetic redox centers with different relaxation rates, Gonzalez, P. J., Barrera G. I., Rizzi A. C., Moura J. J., Passeggi M. C., and Brondino C. D. , J Inorg Biochem, Oct, Volume 103, Number 10, p.1342-6, (2009) AbstractWebsite

Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T(1) of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T(1) is longer, no modulation of the coupling between metal centers can be detected.

A variable temperature spectroscopic study on Paracoccus pantotrophus pseudoazurin: Protein constraints on the blue Cu site, Xie, Xiangjin, Hadt Ryan G., Pauleta Sofia R., Gonzalez Pablo J., Un Sun, Moura Isabel, and Solomon Edward I. , Journal of Inorganic Biochemistry, Oct, Volume 103, Number 10, p.1307-1313, (2009) AbstractWebsite

The blue or Type 1 (T1) copper site of Paracoccus pantotrophus pseudoazurin exhibits significant absorption intensity in both the 450 and 600 nm regions. These are sigma and pi S(Cys) to Cu(2+) charge transfer (CT) transitions. The temperature dependent absorption, EPR, and resonance Raman (rR) vibrations enhanced by these bands indicate that a single species is present at all temperatures. This contrasts the temperature dependent behavior of the T1 center in nitrite reductase [S. Ghosh, X. Xie, A. Dey, Y. Sun, C. Scholes, E. Solomon, Proc. Natl. Acad. Sci. 106 (2009) 4969-4974] which has a thioether ligand that is unconstrained by the protein. The lack of temperature dependence in the T1 site in pseudoazurin indicates the presence of a protein constraint similar to the blue Cu site in plastocyanin where the thioether ligand is constrained at 2.8 angstrom. However, plastocyanin exhibits only pi CT. This spectral difference between pseudoazurin and plastocyanin reflects a coupled distortion of the site where the axial thiorether in pseudoazurin is also constrained, but at a shorter Cu-S(Met) bond length. This leads to an increase in the Cu(2+)-S(Cys) bond length, and the site undergoes a partial tetragonal distortion in pseudoazurin. Thus, its ground state wavefunction has both sigma and pi character in the Cu(2+)-S(Cys) bond. (C) 2009 Elsevier Inc. All rights reserved.

The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase, Cerqueira, N. M., Gonzalez P. J., Brondino C. D., Romao M. J., Romao C. C., Moura I., and Moura J. J. , J Comput Chem, Nov 30, Volume 30, Number 15, p.2466-84, (2009) AbstractWebsite

The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton-electron transfer stage, where the Mo(V) species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo-dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with Mo(VI) ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl-dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur-based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of Mo(V) species. Mo(VI) intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the Mo(VI) species allow water molecule dissociation, and, the concomitant enzymatic turnover.

Kinetic, structural, and EPR studies reveal that aldehyde oxidoreductase from Desulfovibrio gigas does not need a sulfido ligand for catalysis and give evidence for a direct Mo-C interaction in a biological system, Santos-Silva, T., Ferroni F., Thapper A., Marangon J., Gonzalez P. J., Rizzi A. C., Moura I., Moura J. J., Romao M. J., and Brondino C. D. , J Am Chem Soc, Jun 17, Volume 131, Number 23, p.7990-8, (2009) AbstractWebsite

Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a member of the xanthine oxidase (XO) family of mononuclear Mo-enzymes that catalyzes the oxidation of aldehydes to carboxylic acids. The molybdenum site in the enzymes of the XO family shows a distorted square pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. We report here steady-state kinetic studies of DgAOR with the inhibitors cyanide, ethylene glycol, glycerol, and arsenite, together with crystallographic and EPR studies of the enzyme after reaction with the two alcohols. In contrast to what has been observed in other members of the XO family, cyanide, ethylene glycol, and glycerol are reversible inhibitors of DgAOR. Kinetic data with both cyanide and samples prepared from single crystals confirm that DgAOR does not need a sulfido ligand for catalysis and confirm the absence of this ligand in the coordination sphere of the molybdenum atom in the active enzyme. Addition of ethylene glycol and glycerol to dithionite-reduced DgAOR yields rhombic Mo(V) EPR signals, suggesting that the nearly square pyramidal coordination of the active enzyme is distorted upon alcohol inhibition. This is in agreement with the X-ray structure of the ethylene glycol and glycerol-inhibited enzyme, where the catalytically labile OH/OH(2) ligand is lost and both alcohols coordinate the Mo site in a eta(2) fashion. The two adducts present a direct interaction between the molybdenum and one of the carbon atoms of the alcohol moiety, which constitutes the first structural evidence for such a bond in a biological system.

A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane, Zhang, Z., Xia S., Leonard D., Jaffrezic-Renault N., Zhang J., Bessueille F., Goepfert Y., Wang X., Chen L., Zhu Z., Zhao J., Almeida M. G., and Silveira C. M. , Biosensors & Bioelectronics, Feb 15, Volume 24, Number 6, p.1574-9, (2009) AbstractWebsite

A conductometric biosensor for nitrite detection was developed using cytochrome c nitrite reductase (ccNiR) extracted from Desulfovibrio desulfuricans ATCC 27774 cells immobilized on a planar interdigitated electrode by cross-linking with saturated glutaraldehyde (GA) vapour in the presence of bovine serum albumin, methyl viologen (MV), Nafion, and glycerol. The configuration parameters for this biosensor, including the enzyme concentration, ccNiR/BSA ratio, MV concentration, and Nafion concentration, were optimized. Various experimental parameters, such as sodium dithionite added, working buffer solution, and temperature, were investigated with regard to their effect on the conductance response of the biosensor to nitrite. Under the optimum conditions at room temperature (about 25 degrees C), the conductometric biosensor showed a fast response to nitrite (about 10s) with a linear range of 0.2-120 microM, a sensitivity of 0.194 microS/microM [NO(2)(-)], and a detection limit of 0.05 microM. The biosensor also showed satisfactory reproducibility (relative standard deviation of 6%, n=5). The apparent Michaelis-Menten constant (K(M,app)) was 338 microM. When stored in potassium phosphate buffer (100mM, pH 7.6) at 4 degrees C, the biosensor showed good stability over 1 month. No obvious interference from other ionic species familiar in natural waters was detected. The application experiments show that the biosensor is suitable for use in real water samples.

Molybdenum induces the expression of a protein containing a new heterometallic Mo-Fe cluster in Desulfovibrio alaskensis, Rivas, M. G., Carepo M. S., Mota C. S., Korbas M., Durand M. C., Lopes A. T., Brondino C. D., Pereira A. S., George G. N., Dolla A., Moura J. J., and Moura I. , Biochemistry, Feb 10, Volume 48, Number 5, p.873-82, (2009) AbstractWebsite

The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmental conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 microM molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.

2008
Biochemical and spectroscopic characterization of the membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Correia, C., Besson S., Brondino C. D., Gonzalez P. J., Fauque G., Lampreia J., Moura I., and Moura J. J. , J Biol Inorg Chem, Nov, Volume 13, Number 8, p.1321-33, (2008) AbstractWebsite

Membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (Iota) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at Em=+197 mV (heme c) and -4.5 mV (heme b). Variable-temperature (4-120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a [3Fe-4S]+ cluster and overlapping signals associated with at least three types of [4Fe-4S]+ centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called "low-pH" and "high-pH," changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases.