Publications

Export 24 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Carvalho, AL, Dias FMV, Nagy T, Prates JAM, Proctor MR, Smith N, Bayer EA, Davies GJ, Ferreira LMA, Romao MJ, Fontes CMGA, Gilbert HJ.  2007.  Evidence for a dual binding mode of dockerin modules to cohesins. Proceedings of the National Academy of Sciences of the United States of America. 104:3089-3094., Number 9 AbstractWebsite
n/a
Carvalho, AL, Goyal A, Prates JAM, Bolam DN, Gilbert HJ, Pires VMR, Ferreira LMA, Planas A, Romao MJ, Fontes C.  2004.  The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. Journal of Biological Chemistry. 279:34785-34793., Number 33 AbstractWebsite
n/a
Carvalho, AL, Pires VMR, Gloster TM, Turkenburg JP, Prates JAM, Ferreira LMA, Romao MJ, Davies GJ, Fontes C, Gilbert HJ.  2005.  Insights into the structural determinants of cohesin dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. Journal of Molecular Biology. 349:909-915., Number 5 AbstractWebsite
n/a
Carvalho, AL, Dias FMV, Prates JAM, Nagy T, Gilbert HJ, Davies GJ, Ferreira LMA, Romao MJ, Fontes C.  2003.  Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proceedings of the National Academy of Sciences of the United States of America. 100:13809-13814., Number 24 AbstractWebsite
n/a
Carvalho, AL, Sanz L, Barettino D, Romero A, Calvete JJ, Romao MJ.  2002.  Crystal structure of a prostate kallikrein isolated from stallion seminal plasma: A homologue of human PSA. Journal of Molecular Biology. 322:325-337., Number 2 AbstractWebsite
n/a
Carvalho, AL, Santos-Silva T, Romão MJ, Eurico J, Marcelo F.  2018.  {CHAPTER 2 Structural Elucidation of Macromolecules}, sep. Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications with the Protocols. :30–91.: BENTHAM SCIENCE PUBLISHERS AbstractWebsite
n/a
Carvalho, AL, Dias JM, Sanz L, Romero A, Calvete JJ, Romao MJ.  2001.  Purification, crystallization and identification by X-ray analysis of a prostate kallikrein from horse seminal plasma. Acta Crystallographica Section D-Biological Crystallography. 57:1180-1183. AbstractWebsite
n/a
Cerqueira, NMFSA, Coelho C, Bras NF, Fernandes PA, Garattini E, Terao M, Romao MJ, Ramos MJ.  2015.  Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. Journal of Biological Inorganic Chemistry. 20:209-217., Number 2 AbstractWebsite

In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.

Cerqueira, NMFSA, Gonzalez PJ, Brondino CD, Romao MJ, Romao CC, Moura I, Moura JJG.  2009.  The Effect of the Sixth Sulfur Ligand in the Catalytic Mechanism of Periplasmic Nitrate Reductase. Journal of Computational Chemistry. 30:2466-2484., Number 15 AbstractWebsite
n/a
Chaves, S, Gil M, Canario S, Jelic R, Romao MJ, Trincao J, Herdtweck E, Sousa J, Diniz C, Fresco P, Santos AM.  2008.  Biologically relevant O,S-donor compounds. Synthesis, molybdenum complexation and xanthine oxidase inhibition. Dalton Transactions. :1773-1782., Number 13 AbstractWebsite
n/a
Coelho, C, Marangon J, Rodrigues D, Moura JJG, Romao MJ, Paes de Sousa PM, Correia dos Santos MM.  2013.  Induced peroxidase activity of haem containing nitrate reductases revealed by protein film electrochemistry. Journal of Electroanalytical Chemistry. 693:105-113. AbstractWebsite
n/a
Coelho, C, Gonzalez PJ, Moura JJG, Moura I, Trincao J, Romao MJ.  2011.  The Crystal Structure of Cupriavidus necator Nitrate Reductase in Oxidized and Partially Reduced States. Journal of Molecular Biology. 408:932-948., Number 5 AbstractWebsite
n/a
Coelho, C, Romao MJ.  2015.  Structural and mechanistic insights on nitrate reductases, 2015. Protein Science. 24(12):1901-1911. AbstractWebsite

Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data.

Coelho, C, Gonzalez PJ, Trincao J, Carvalho AL, Najmudin S, Hettman T, Dieckman S, Moura JJG, Moura I, Romao MJ.  2007.  Heterodimeric nitrate reductase (NapAB) from Cupriavidus necator H16: purification, crystallization and preliminary X-ray analysis. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 63:516-519. AbstractWebsite
n/a
Coelho, C, Muthukumaran J, Santos-Silva T, Romão MJ.  2019.  Systematic exploration of predicted destabilizing nonsynonymous single nucleotide polymorphisms (nsSNPs) of human aldehyde oxidase: A Bio-informatics study. Pharmacology Research & Perspectives. 7:e00538., Number 6 AbstractWebsite

Abstract Aldehyde Oxidase (hAOX1) is a cytosolic enzyme involved in the metabolism of drugs and xenobiotic compounds. The enzyme belongs to the xanthine oxidase (XO) family of Mo containing enzyme and is a homo-dimer of two 150 kDa monomers. Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) of hAOX1 have been reported as affecting the ability of the enzyme to metabolize different substrates. Some of these nsSNPs have been biochemically and structurally characterized but the lack of a systematic and comprehensive study regarding all described and validated nsSNPs is urgent, due to the increasing importance of the enzyme in drug development, personalized medicine and therapy, as well as in pharmacogenetic studies. The objective of the present work was to collect all described nsSNPs of hAOX1 and utilize a series of bioinformatics tools to predict their effect on protein structure stability with putative implications on phenotypic functional consequences. Of 526 nsSNPs reported in NCBI-dbSNP, 119 are identified as deleterious whereas 92 are identified as nondeleterious variants. The stability analysis was performed for 119 deleterious variants and the results suggest that 104 nsSNPs may be responsible for destabilizing the protein structure, whereas five variants may increase the protein stability. Four nsSNPs do not have any impact on protein structure (neutral nsSNPs) of hAOX1. The prediction results of the remaining six nsSNPs are nonconclusive. The in silico results were compared with available experimental data. This methodology can also be used to identify and prioritize the stabilizing and destabilizing variants in other enzymes involved in drug metabolism.

Coelho, C, Mahro M, Trincao J, Carvalho ATP, Ramos MJ, Terao M, Garattini E, Leimkuehler S, Romao MJ.  2012.  The First Mammalian Aldehyde Oxidase Crystal Structure INSIGHTS INTO SUBSTRATE SPECIFICITY. Journal of Biological Chemistry. 287:40690-40702., Number 48 AbstractWebsite
n/a
Coelho, C, Foti A, Hartmann T, Santos-Silva T, Leimk S, Rom MJ.  2015.  Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase, 2015. Nat Chem Biol. 11(10):779-83.Website
Correia, VG, Pinheiro BA, Carvalho AL, Palma AS.  2019.  Resistance to Aminoglycosides. Antibiotic Drug Resistance. :1-38.: John Wiley & Sons, Ltd Abstract

Summary The emergence of bacterial resistance to different antibiotics in clinical use, together with the knowledge on the mechanisms by which bacteria resist the action of aminoglycosides, have contributed to the renewed interest in these molecules as potential antimicrobials. Here, we give an overview on natural and semisynthetic aminoglycosides and their structural features and modes of action, focusing on the structural insight underlying resistance mechanisms. Developments on carbohydrate chemistry and microarray technology are highlighted as powerful approaches toward generation of new aminoglycosides and for screening their interactions with RNAs and proteins. The link between antibiotic uptake and the human gut microbiome is also addressed, focusing on gut microbiome function and composition, antibiotic-induced alterations in host health, and antibiotic resistance. In addition, strategies to modulate human microbiome responses to antibiotics are discussed as novel approaches for aminoglycoside usage and for the effectiveness of antibiotic therapy.

Correia, MAS, Otrelo-Cardoso AR, Schwuchow V, {Sigfridsson Clauss} KGV, Haumann M, Romão MJ, Leimkühler S, Santos-Silva T.  2016.  {The Escherichia coli Periplasmic Aldehyde Oxidoreductase Is an Exceptional Member of the Xanthine Oxidase Family of Molybdoenzymes}, oct. ACS Chemical Biology. 11:2923–2935., Number 10 AbstractWebsite

The xanthine oxidase (XO) family comprises molybdenum-dependent enzymes that usually form homodimers (or dimers of heterodimers/trimers) organized in three domains that harbor two [2Fe-2S] clusters, one FAD, and a Mo cofactor. In this work, we crystallized an unusual member of the family, the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli. This is the first example of an E. coli protein containing a molybdopterin-cytosine-dinucleotide cofactor and is the only heterotrimer of the XO family so far structurally characterized. The crystal structure revealed the presence of an unexpected [4Fe-4S] cluster, anchored to an additional 40 residues subdomain. According to phylogenetic analysis, proteins containing this cluster are widely spread in many bacteria phyla, putatively through repeated gene transfer events. The active site of PaoABC is highly exposed to the surface with no aromatic residues and an arginine (PaoC-R440) making a direct interaction with PaoC-E692, which acts as a base catalyst. In order to understand the importance of R440, kinetic assays were carried out, and the crystal structure of the PaoC-R440H variant was also determined.

Correia, HD, Marangon J, Brondino CD, Moura JJG, Romao MJ, Gonzalez PJ, Santos-Silva T.  2015.  Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction. Journal of Biological Inorganic Chemistry. 20:219-229., Number 2 AbstractWebsite

Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using C-13-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe(425) and Tyr(535) are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.

Correia, VG, Trovão F, Pinheiro BA, Brás JLA, Silva LM, Nunes C, Coimbra MA, Liu Y, Feizi T, Fontes CMGA, Mulloy B, Chai W, Carvalho AL, Palma AS.  2021.  Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus, December. Microbiology spectrum. 9:e0182621., Number 3 AbstractWebsite

A multigene polysaccharide utilization locus (PUL) encoding enzymes and surface carbohydrate (glycan)-binding proteins (SGBPs) was recently identified in prominent members of <i>Bacteroidetes</i> in the human gut and characterized in Bacteroides ovatus. This PUL-encoded system specifically targets mixed-linkage β1,3-1,4-glucans, a group of diet-derived carbohydrates that promote a healthy microbiota and have potential as prebiotics. The BoSGBP<sub>MLG</sub>-A protein encoded by the <i>BACOVA_2743</i> gene is a SusD-like protein that plays a key role in the PUL's specificity and functionality. Here, we perform a detailed analysis of the molecular determinants underlying carbohydrate binding by BoSGBP<sub>MLG</sub>-A, combining carbohydrate microarray technology with quantitative affinity studies and a high-resolution X-ray crystallography structure of the complex of BoSGBP<sub>MLG</sub>-A with a β1,3-1,4-nonasaccharide. We demonstrate its unique binding specificity toward β1,3-1,4-gluco-oligosaccharides, with increasing binding affinities up to the octasaccharide and dependency on the number and position of β1,3 linkages. The interaction is defined by a 41-Å-long extended binding site that accommodates the oligosaccharide in a mode distinct from that of previously described bacterial β1,3-1,4-glucan-binding proteins. In addition to the shape complementarity mediated by CH-π interactions, a complex hydrogen bonding network complemented by a high number of key ordered water molecules establishes additional specific interactions with the oligosaccharide. These support the twisted conformation of the β-glucan backbone imposed by the β1,3 linkages and explain the dependency on the oligosaccharide chain length. We propose that the specificity of the PUL conferred by BoSGBP<sub>MLG</sub>-A to import long β1,3-1,4-glucan oligosaccharides to the bacterial periplasm allows <i>Bacteroidetes</i> to outcompete bacteria that lack this PUL for utilization of β1,3-1,4-glucans. <b>IMPORTANCE</b> With the knowledge of bacterial gene systems encoding proteins that target dietary carbohydrates as a source of nutrients and their importance for human health, major efforts are being made to understand carbohydrate recognition by various commensal bacteria. Here, we describe an integrative strategy that combines carbohydrate microarray technology with structural studies to further elucidate the molecular determinants of carbohydrate recognition by BoSGBP<sub>MLG</sub>-A, a key protein expressed at the surface of Bacteroides ovatus for utilization of mixed-linkage β1,3-1,4-glucans. We have mapped at high resolution interactions that occur at the binding site of BoSGBP<sub>MLG</sub>-A and provide evidence for the role of key water-mediated interactions for fine specificity and affinity. Understanding at the molecular level how commensal bacteria, such as prominent members of <i>Bacteroidetes</i>, can differentially utilize dietary carbohydrates with potential prebiotic activities will shed light on possible ways to modulate the microbiome to promote human health.

Cunha, CA, Romao MJ, Sadeghi SJ, Valetti F, Gilardi G, Soares CM.  1999.  Effects of protein-protein interactions on electron transfer: docking and electron transfer calculations for complexes between flavodoxin and c-type cytochromes. Journal of Biological Inorganic Chemistry. 4:360-374., Number 3 AbstractWebsite
n/a
Cunha, CA, Macieira S, Dias JM, Almeida G, Goncalves LL, Costa C, Lampreia J, Huber R, Moura JJG, Moura I, Romao MJ.  2003.  Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774 - The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). Journal of Biological Chemistry. 278:17455-17465., Number 19 AbstractWebsite
n/a