Publications

Export 6 results:
Sort by: [ Author  (Asc)] Title Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Ali, MS, Muthukumaran J, Jain M, Santos-Silva T, Al-Lohedan HA, Al-Shuail NS.  2021.  Molecular interactions of cefoperazone with bovine serum albumin: Extensive experimental and computational investigations, 2021. 337:116354. AbstractWebsite

We investigated the binding of the cephalosporin-class drug cefoperazone (CFP) with bovine serum albumin (BSA) using spectroscopic techniques and in silico methods. The aim of this study was to (i) emphasize the importance of correcting for the inner filter effect in this type of study and (ii) understand the binding mechanism of CFP with BSA by addressing protein conformation and plausible binding sites. Formation of the complex was confirmed by UV–visible spectroscopy. Quenching of BSA fluorescence in the presence of CFP was also observed. Because of the high absorption of CFP in the fluorescence emission range of BSA, the fluorescence emission spectra were corrected for the inner filter effect. Fluorescence emission was studied at excitation wavelengths of 280 and 295 nm. The uncorrected data showed a significant contribution of tyrosine at the excitation wavelength of 280 nm; however, after correction, this contribution became negligible. The static-type mechanism was found to be involved in quenching, with almost 1:1 binding between BSA and CFP. Hydrogen bonding and hydrophobic forces were found to dominate the protein–ligand interactions with a slight decrease in the α-helical contents. Synchronous fluorescence spectral data (at Δλ = 15 and 60 nm) were also corrected for the inner filter effect, with the results being similar to those of excitation at 280 and 295 nm. Molecular docking and molecular dynamics (MD) simulation results suggest that, apart from the two known drug binding sites (drug site I and II), one putative binding site (binding site III) located between BSA domains 1 and 3 was also possible for CFP. MD simulations of the previously reported drug binding sites (drug site I and II) and putative binding site III revealed that binding site III showed excellent binding profiles and could be a target for future research related to BSA-drug binding.

Almeida, MG, Macieira S, Goncalves LL, Huber R, Cunha CA, Romao MJ, Costa C, Lampreia J, Moura JJG, Moura I.  2003.  The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774 - Re-evaluation of the spectroscopic data and redox properties. European Journal of Biochemistry. 270:3904-3915., Number 19 AbstractWebsite
n/a
Archer, M, Carvalho AL, Teixeira S, Moura I, Moura JJG, Rusnak F, Romao MJ.  1999.  Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein. Protein Science. 8:1536-1545., Number 7 AbstractWebsite
n/a
Archer, M, Huber R, Tavares P, Moura I, Moura JJG, Carrondo MA, Sieker LC, Legall J, Romao MJ.  1995.  CRYSTAL-STRUCTURE OF DESULFOREDOXIN FROM DESULFOVIBRIO-GIGAS DETERMINED AT 1.8 ANGSTROM RESOLUTION - A NOVEL NONHEME IRON PROTEIN-STRUCTURE. Journal of Molecular Biology. 251:690-702., Number 5 AbstractWebsite
n/a
Archer, M, Banci L, Dikaya E, Romao MJ.  1997.  Crystal structure of cytochrome c' from Rhodocyclus gelatinosus and comparison with other cytochromes c'. Journal of Biological Inorganic Chemistry. 2:611-622., Number 5 AbstractWebsite
n/a
Aveiro, SS, Freire F, Clayton J, Cameloc M, Carvalho AL, Ferreira GC, Romao MJ, Macedo AL, Goodfellow BJ.  2012.  Structural studies of the p22HBP/SOUL family of heme-binding proteins. Febs Journal. 279:458-458. AbstractWebsite
n/a