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Abstract

The traditional lock-based concurrency control is complex and error-prone due to its
low-level nature and composability challenges. Software transactional memory (STM),
inherited from the database world, has risen as an exciting alternative, sparing the pro-
grammer from dealing explicitly with such low-level mechanisms.

In real world scenarios, software is often faced with requirements such as high avail-
ability and scalability, and the solution usually consists on building a distributed system.
Given the benefits of STM over traditional concurrency controls, Distributed Software
Transactional Memory (DSTM) is now being investigated as an attractive alternative for
distributed concurrency control.

Our long-term objective is to transparently enable multithreaded applications to exe-
cute over a DSTM setting. In this work we intend to pave the way by defining a modular
DSTM framework for the Java programming language. We extend an existing, efficient,
STM framework with a new software layer to create a DSTM framework. This new layer
interacts with the local STM using well-defined interfaces, and allows the implementa-
tion of different distributed memory models while providing a non-intrusive, familiar,
programming model to applications, unlike any other DSTM framework.

Using the proposed DSTM framework we have successfully, and easily, implemented
a replicated STM which uses a Certification protocol to commit transactions. An evalu-
ation using common STM benchmarks showcases the efficiency of the replicated STM,
and its modularity enables us to provide insight on the relevance of different implemen-
tations of the Group Communication System required by the Certification scheme, with
respect to performance under different workloads.

Keywords: Transactional Memory, Distributed Systems, Concurrency Control, Replica-
tion
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Resumo

O controlo de concorrência tradicional com trincos é complexo e propenso a erros devido
à sua natureza de baixo nível e falta de composicionalidade. A Memória Transacional por
Software (MTS), herdada do mundo das Bases de Dados, afigura-se como uma alternativa
excitante, onde o programador não lida explicitamente com mecanismos de baixo nível.

No mundo industrial, o software precisa de lidar com requerimentos tais como dis-
ponibilidade e escalabilidade, e a solução habitualmente consiste em construir sistemas
distribuídos. Dados os benefícios da MTS em relação ao controlo de concorrência tradi-
cional, a Memória Transacional Distribuída por Software (MTDS) está a ser investigada
como uma alternativa atrativa ao controlo de concorrência distribuída.

O nosso objetivo a longo prazo é permitir que aplicações que explorem múltiplos
fluxos de execução possam ser executadas num ambiente de MTDS de maneira trans-
parente. Neste trabalho propomo-nos abrir caminho através da definição de uma infra-
estrutura modular para MTDS para a plataforma Java. Estendemos uma infraestrutura
existente e eficiente para MTS com uma nova camada de software para criar uma infraes-
trutura para suporte de MTDS. Esta nova camada interage com a MTS local utilizando
interfaces bem definidas, e permite a implementação de diferentes modelos de memória
distribuída ao mesmo tempo que fornece uma interface familiar e não-intrusiva para as
aplicações, ao contrário das outras infraestruturas para MTDS.

Utilizando a infraestrutura proposta, implementámos facilmente e com sucesso uma
MTS replicada que utiliza protocolos de Certificação para confirmar transações. Uma
avaliação efetuada com benchmarks comuns de MTS mostram a eficácia da MTS repli-
cada, e a sua modularidade permite-nos proporcionar uma análise da relevância de dife-
rentes implementações do Sistema de Comunicação em Grupo necessário aos protocolos
de Certificação, em relação ao desempenho do sistema em diferentes cargas de trabalho.

Palavras-chave: Memória Transacional, Sistemas Distribuídos, Controlo de Concorrência, Replicação
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1
Introduction

1.1 Motivation

Parallel programming cannot be ignored any more. Multi-core computers became main-
stream as we hit the ceiling regarding processor clock speed. But parallel programming is
inherently harder than sequential programming, as the programmer must reason about
multiple flows of execution instead of just one. The traditional lock-based concurrency
control is complex and error-prone due to its low-level nature and composability chal-
lenges [HMPJH05], so a suitable abstraction is needed.

Software transactional memory, STM henceforth, has been around for over fifteen years
now, since Shavit and Touitou’s original paper [ST95] back in 1995. It is based on the
transactional model, which originated in the database world, where the unit of execution
is an atomic block consisting of one or more operations. This block has all-or-nothing se-
mantics, in the sense that either all its operations succeed and execute as if they are one
single indivisible and instantaneous operation, or none executes at all. STM became a
real alternative to lock-based synchronization, even industrially, as Intel keeps improv-
ing its C++ STM compiler [Int12a], the GNU Compiler Collection (GCC) gets support
for STM [Fou12b], and Hardware Transactional Memory support from IBM [IBM12] and
Intel [Int12b] processors is a reality.

Research focus has recently been directed to the application of STM in the distributed
setting and, as of today, there has been already substantial research in the distributed
STM field. To that purpose, existing STM frameworks have been extended with com-
munication layers, schedulers, and mechanisms and/or protocols for cache coherence,

1



1. INTRODUCTION 1.2. Problem

replication and contention management, and object lookup. Only just now an effort has
began in designing a modular framework to support distributed STM.

On top of that, the programming models offered by previously proposed frame-
works [KAJ+08a, CRCR09, CRR11a, SR11] are intrusive.

DiSTM [KAJ+08a], which is built on top of DSTM2 [HLM06], requires the program-
mer to implement the interface of shared atomic objects with a combination of reflection
and runtime class synthesis in object factories.

In D2STM [CRCR09], based on JVSTM [CRS06], the programmer must wrap objects
in versioned boxes, containers that keep a sequence of values representing their history. In
more recent work, the GenRSTM framework [CRR11a] also wraps objects in versioned
boxes and distributed objects must extend an existing framework-provided class.

HyFlow [SR11] requires all distributed classes to implement a specific interface, in
addition to an explicit indirection through a locator service when we need to access a
distributed object, with which we trade the object’s unique identifier for its reference.

1.2 Problem

In the current distributed STM frameworks, the offered programming models are in-
trusive and highly dependent on the chosen STM framework. This intrusiveness, with
respect to the transactional model, is mainly due to the need to deal with the distributed
setting, which is not transparently handled by the runtime. Coupled with the fact that the
APIs are heterogeneous, this makes the decision of using a specific framework a rather
serious and committing one as new applications become tied to the provided API, and
porting of existing applications is tedious work.

It is then desirable to have available a modular framework to support distributed
STM. This framework should be composed by various components, supporting different
implementations, which can be easily replaced without having to rewrite code. Current
distributed STM frameworks are specifically tailored for a concrete distributed memory
model, e.g., replicated, which can not be replaced, thus inhibiting the fair comparison of
different distributed STM models under the same circumstances.

Also very important, since people are inherently adverse to change, the program-
ming model provided by such framework should remain as familiar as possible, i.e., the
traditional sequential model.

1.3 Proposed Solution

In this dissertation we address the problem of implementing a modular, efficient, dis-
tributed STM system that provides a non-intrusive programming model. Unlike pre-
vious proposals, which are tied to a specific distributed memory model, in our system

2



1. INTRODUCTION 1.4. Contributions

multiple models can be employed.

A distributed STM framework can be naturally implemented by extending an exist-
ing STM framework. TribuSTM, an extension of Deuce, is an efficient STM framework
for Java. To use TribuSTM as a starting point for our distributed STM framework, we
first need to provide support for transactional arrays. We then extend TribuSTM to sup-
port distributed STM by defining a new layer of software below. This layer of software,
called Distribution Manager (DM), encapsulates a distributed memory model and proto-
cols to commit distributed transactions, and interacts with TribuSTM in order to provide
distributed STM. This interaction is made according to clearly defined APIs that allow
different implementations of the DM to be plugged in.

TribuSTM provides a non-intrusive programming model to applications, by rewriting
the bytecode of application classes. Our extension to support distributed STM keeps
the programming model non-intrusive, unlike other distributed STM frameworks, by
performing additional instrumentation.

1.4 Contributions

This dissertation describes the following contributions:

• a novel solution for transactional arrays in TribuSTM, and the required bytecode
instrumentation;

• the definition of a software layer that extends TribuSTM to support distributed STM
in a modular fashion, by interacting with TribuSTM through clearly defined inter-
faces;

• an implementation of a replicated STM on the aforementioned software layer;

• an experimental evaluation of the implementation on a common micro-benchmark,
as well as more complex benchmarks; and

• insight on the relevance of the Group Communication System implementation used
to support replicated STM, in the context of performance under different work-
loads.

1.5 Publications

The contributions have been published prior to this dissertation. The transactional ar-
rays for TribuSTM have appeared in the paper “Efficient Support for In-Place Metadata
in Transactional Memory”, Proceedings of the European Conference on Parallel and Dis-
tributed Computing (Euro-Par), 2012 [DVL12], which has been awarded as a distinguished
paper.

3



1. INTRODUCTION 1.6. Outline

The distributed STM framework was featured in the paper “Uma Infraestrutura para
Suporte de Memória Transacional Distribuída”, Proceedings of the Simpósio de Infor-
mática (INForum), 2012 [VDL12].

1.6 Outline

The rest of this documents is organized as follows. Chapter 2 provides an introduc-
tion to previous work related to our contributions. Chapter 3 introduces the TribuSTM
framework, describing in detail our solution for transactional arrays. Next, in Chapter 4
introduces our extension to TribuSTM to support distributed STM, and presents in de-
tail the defined APIs and the implementation of a replicated STM using our framework.
Chapter 5 presents the results of our experimental evaluation study. Finally, Chapter 6
concludes this dissertation with an overview of its main points and future work direc-
tions.

4



2
Related Work

In this Chapter we describe previous related work which contextualizes and introduces
our proposal.

The Chapter is structured as follows. In § 2.1 we introduce the transactional model
and its properties. Next, in § 2.2, we present Software Transactional Memory and its
semantics, possible implementation strategies, and the programming models provided
by the existing state-of-the-art frameworks. The last section, § 2.3, introduces Distributed
Software Transactional Memory, along with the issues which rise from the distributed
environment. We finish with a survey of the state of the art in distributed commit and
memory consistency protocols for full replication, and the existing frameworks.

2.1 Transactional Model

General-purpose programming languages already support powerful abstractions for se-
quential programming, but unfortunately the same is not true for parallel programming,
where explicit synchronization reigns. But in the database world, database management
systems (DBMS) have been harnessing the performance of parallelism for years.

The main culprit is the concept of a transaction, which lies at the core of the database
programming model, and frees the programmer from worrying about parallelism. A
transaction is a sequence of operations that execute with all-or-nothing semantics, i.e., ei-
ther all operations succeed and execute as if they were one single indivisible and instanta-
neous action, or none executes at all. In the database world, a transaction is characterised
by four attributes: (1) atomicity; (2) consistency; (3) isolation; and (4) durability. These
are known as the ACID properties [GR92, HLR10].

5



2. RELATED WORK 2.2. Software Transactional Memory

Atomicity. Requires that all actions that comprise a transaction complete successfully
for the transaction itself to be successful. If one of these actions fails, the entire transaction
fails and all actions have no apparent effect.

Consistency. Demands that a transaction starting from a consistent state evolves the
database to another consistent state, which is a valid state according to the rules defined
for the data.

Isolation. Requires that two concurrent transactions do not interfere with each other,
i.e., one transaction is not allowed to observe the internal, possibly inconsistent states re-
sulting from the other’s operations. This property can be, and often is, relaxed to improve
performance, allowing different kinds of interference to take place.

Durability. Requires that when a transaction commits, its result will be made perma-
nent and available to following transactions, in spite of possible errors, crashes or power
losses.

As such, a transaction seems to be an interesting alternative to explicit synchroni-
sation. One could wrap a sequence of operations manipulating shared memory in a
transaction, and the atomicity property would guarantee that all operations complete
successfully or the transaction would abort. And the isolation property would ensure
the produced result to be the same as if the transaction was the only one executing, akin
to the sequential fashion.

2.2 Software Transactional Memory

In order to bring transactions to memory, we must consider the differences between
memory transactions and database transactions. For instance, database transactions ac-
cess data in disk, while Transactional Memory (TM) accesses data in memory. The durabil-
ity property then requires the database transaction to record its changes permanently in
disk, but TM is not durable in that sense, since the data in memory only exists as long as
the program is running, so this property is dropped in TM.

The enforce of consistent state after a transaction execution is also not specified, be-
cause it is highly dependent on the semantics of each particular application. And since
TM is pushing its way into an already rich and generic environment, it has to cope with
various ways of data access. This means that data can be accessed in mixed ways, trans-
actionally or not, as opposed to database transactions where transactions are the only
route of data access.

Software Transactional Memory, STM henceforth, has been around for over fifteen years

6



2. RELATED WORK 2.2. Software Transactional Memory

transaction {
x = x + 1
y = y + 1

}

(a) Transaction 1 (T1).

transaction {
while (x = y)

(b) Transaction 2 (T2).

Figure 2.1: Two memory transactions (taken from [HLR10]).

now, since Shavit and Touitou’s original paper [ST95] back in 1995. It instantiates a pro-
gramming model for general-purpose programming, based on the previously described
transactional model (§ 2.1). It became a real alternative to lock-based synchronization,
even industrially, as Intel keeps improving its C++ STM compiler [Int12a], the GNU
Compiler Collection (GCC) gets support for STM [Fou12b], and Hardware Transactional
Memory support from IBM [IBM12] and Intel [Int12b] processors is a reality.

2.2.1 Semantics

To understand STM, we start by introducing and describing its behaviour. Being based on
the transactional model, the basic unit of work is a transaction. A transaction is a group of
memory read and write operations that execute as a single indivisible and instantaneous
operation. If transactions execute atomically1, that means that theoretically it is as if only
one transaction is executing at any given point in time.

Consider the two transactions in Figure 2.1, where initially x = y = 02. T1 incre-
ments the value of both the x and y variables, while T2 will loop forever if x 6= y. Con-
ceptually no two transactions execute simultaneously so this means there are two pos-
sible outcomes: (1) T1 executes before T2; or (2) T2 executes before T1. Either way, T2
would never loop because when it executes the outcome for case (1) is x = y = 1, and for
case (2) is x = y = 0.

There are several definitions used to describe the semantics of transactions. Inher-
ited from the database literature, the Serializability criteria [EGLT76, HLR10] states that
the result of the parallel execution of transactions must be equivalent to some sequential
execution of those transactions. This means that the sequential order that transactions
seem to run in is not required to be the actual real-time order in which they do. As long
as the system’s implementation guarantees the result of their execution to be serializable,
it is free to reorder or interleave them.

This freedom to rearrange to order of execution of transactions in the Serializability
criteria motivates the stronger Strict Serializability [HLR10]. In Strict Serializability if T1
actually completes before T2 this has to be reflected in the resultant serialization order,
something that is not required in Serializability.

1It is worth pointing out that describing something as atomic means that it appears to the system as if it
occurred instantaneously, and as such has both the atomicity and isolation properties.

2In all examples, unless stated otherwise, consider all variables with the initial value of 0 (zero).
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transaction {
x = x + y + 1

}

(a) Transaction 3 (T3).

transaction {
y = x + y + 1

}

(b) Transaction 4 (T4).

Figure 2.2: Two memory transactions producing a write skew (taken from [HLR10]).

Another criteria is Linearizability [HW90, HLR10]. It states that every transaction is to
be considered as a single atomic operation that appears to execute at some unique point
during its lifetime.

A weaker criteria that can also be used is Snapshot Isolation [RFF06, HLR10]. The key
idea is that each transaction takes a memory snapshot at its start and then performs all
read and write operations on this snapshot. This criteria allows increased concurrency in
databases by allowing non-serializable executions to commit.

Figure 2.2 depicts an example of a possible non-serializable execution. Consider two
transactions T3 and T4 both doing the same computation, except that T3 stores the result
in x while T4 stores it in y. Under the Serializability criteria two results are possible,
namely x= 1 ∧ y= 2 or x= 2 ∧ y= 1, if T1 executes before T2 and vice-versa, respectively.
Snapshot Isolation admits a third result, x = 1 ∧ y = 1, in which both transactions begin
with the same snapshot and commit their disjoint update sets. This anomaly is called
write skew.

Lastly, the Opacity criteria [GK08, HLR10] provides stronger guarantees about the
memory consistency during a transaction’s execution. It states that all operations per-
formed by every committed transaction appear as if they happened at some single, in-
divisible point during the transaction lifetime, no operation performed by any aborted
transaction is ever visible to other transactions (including live ones), and that every trans-
action (even if aborted) always observes a consistent state of the system. This last prop-
erty is very important, as a transaction executing over an inconsistent state might lead to
unexpected and/or incorrect behaviours, possibly leading to fatal errors, e.g., a memory
access violation [LC07].

STM is pushing its way into the general-purpose programming world, and as such
it has to cope with various ways of data access. This means that data can be accessed in
mixed ways, transactionally or not. The semantic criteria just presented do not consider
the behaviour result from transactional and non-transactional access to the same data.
This behaviour is defined by two approaches called Weak and Strong Atomicity [BLM06,
HLR10].

The former only guarantees transactional semantics between transactions, e.g., trans-
actions lose their isolation regarding non-transactional code. The latter also guaran-
tees the semantics between transactional and non-transactional code, that is, even non-
transactional accesses to shared data are executed as a transaction.
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2.2.2 Implementation Strategies

In the previous section we presented an overview of STM semantics. We will now intro-
duce the main design choices to be considered when implementing such semantics. A
straightforward implementation of the described semantics would be to use a global lock
that transactions would acquire before starting, releasing after commiting. We would
indeed be implementing the semantics, but there would be no advantage whatsoever in
using STM over any other concurrency control methods, as no concurrency would actu-
ally be exploited.

Since transactions execute concurrently, in parallel even if possible, care has to be
taken to mediate concurrent access to shared data. A conflict occurs when two transac-
tions perform two concurrent accesses on the same data and at least one of them is a
write. The system need not detect the conflict as soon as it occurs, but it must take mea-
sures to resolve it after its detection, by aborting one of the transactions for example. Oc-
currence, detection and resolution are the three events that motivate the two approaches
to concurrency control, namely Pessimistic and Optimistic.

In Pessimistic Concurrency Control [HLR10], all three events occur upon data access.
As soon as a transaction accesses some shared data, the conflict is immediately detected
and resolved. This is typically implemented using a lock per each piece of shared data
which a transaction acquires upon access, preventing other transactions from accessing
the data. Due to the use of locks, implementations must take care to ensure that trans-
actions progress. In this particular case, it must avoid deadlocks. A set of processes3 is
deadlocked if each process in the set is waiting to acquire a lock that only another pro-
cess in the set can release.

With Optimistic Concurrency Control [HLR10], the detection and resolution can hap-
pen after the conflict occurrence. The conflicting transactions are therefore allowed to
continue, but somewhere down the road the system will deal with the conflict before,
or when, one of the transactions tries to commit. Instead of deadlocks, these implemen-
tations must be aware that they can lead to livelocks. A livelock situation is similar to a
deadlock, but the processes involved are not in a waiting state, but effectively preventing
each other from progressing. For instance, if a write to x conflict is resolved by aborting
one of the transactions, that same transaction may be restarted and upon writing to x

again, cause the abortion of the first transaction.

While conflict detection is trivial in Pessimistic Concurrency Control due to the use

3In the context of this dissertation, thread and process may be used interchangeably, as its differences are
not relevant.
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of locks, systems using the Optimistic Concurrency Control can apply various strate-
gies. For instance, if conflicts are detected upon data access (like in Pessimistic Concur-
rency Control), the system is said to use Eager Conflict Detection [HLR10]. Other alterna-
tive is to detect conflicts in a validation phase, where a transaction checks all previously
read and written locations for concurrent updates. This validation can be triggered at
any time, even multiple times, during the transaction’s lifetime.

Inversely to the Eager Conflict Detection is Lazy Conflict Detection [HLR10]. Upon the
attempt of a transaction to commit, its read and write sets are checked for conflicts with
other transactions.

The kind of accesses that conflict can be exploited by the Optimistic Concurrency Con-
trol. If the system only takes into account conflicts between active and already committed
transactions, it is said to have Committed Conflict Detection [HLR10], which is impossible
in Pessimistic Concurrency Control due to the use of locks. Conversely, if it identifies
conflicts between concurrent running transactions it is said to have Tentative Conflict De-
tection [HLR10].

The Isolation property states that transactions do not observe the intermediate state
of one another. As such, the last design choice is related to how a transaction manages
its tentative updates. The first approach is called Eager Version Management or Direct Up-
date [HLR10]. It is called so because the transaction modifies the actual data in memory,
while maintaining an undo log holding the values it has overwritten to restore them in
case the transaction aborts. This scheme implies the use of Pessimistic Concurrency Con-
trol as the transaction must exclusively acquire the locations for itself, for it is going to
update them.

The alternative approach must be holding the updated values somewhere if it is not
writing them on the fly. It is called Lazy Version Management, or Deferred Update [HLR10].
Instead of an undo log, each transaction buffers its tentative writes in a redo log. This log
must be consulted by the transaction’s read operations to obtain the most fresh value if it
has been updated. If the transaction commits, the contents of the redo log are written in
their respective locations. If the transaction aborts, it only needs to discard the buffer.

2.2.3 Programming Model

So far we have discussed the semantics of STM (§ 2.2.1) and some dimensions of its im-
plementation where various strategies can be used (§ 2.2.2). While this is valuable knowl-
edge from the point of view of the programmer, the programming model provided to use
STM is also very important.

As we have seen, STM coexists with other models in the vast world of general-
purpose programming. As a direct consequence of this, it is clear that when inside a
transaction, memory accesses are not regular reads and writes.
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do {
startTx()
writeTx(x, readTx(x) + 1)
writeTx(y, readTx(y) + 1)

} while (commitTx())

(a) Basic programming model.

atomic {
x = x + 1
y = y + 1

}

(b) Atomic block.

Figure 2.3: Two STM programming models.

For instance, considering that transactions are isolated and that multiple transactions
can execute concurrently, if one transaction writes to memory location l and another con-
current transaction subsequently reads l, it would read the value written by the former,
clearly violating the isolation property. This means that memory reads and writes are not
ordinary accesses, in order to ensure isolation.

As such, we can assume that there are two operations to read and write while in a
transactional context, readTx(x) and writeTx(x, val) respectively. The first returns
the value of the variable x which the current transaction should have access to, while the
latter writes val into variable x. There should also be an operation to commit the current
transaction, namely commitTx(), and startTx() must initialise whatever is needed to
start a transaction.

In its most basic form, the programmer must explicitly declare a transaction using
the startTx, {read,write}Tx, commitTx loop pattern (Figure 2.3a). Alternatively, the
system can provide a more friendly atomic block, as seen in Figure 2.3b, that implicitly
wraps its contents to manage a transaction, and replace the memory accesses within the
block by calls to {read,write}Tx.

2.2.4 Frameworks

As we know, theory and practice don’t always hold hands. In the next paragraphs we
analyse the frameworks that have been presented as a result of, and tool for, research.
Like our own work, these frameworks are for the Java programming language.

To support our analysis, for each framework we provide an example tailored to high-
light several idiosyncrasies of each programming model. The examples consist of a list
data structure implemented with linked Node objects, with an insert operation that in-
serts a new Node at the first position of the list. This operation is to be executed as a
transaction. In Figure 2.4 we can see the example implemented in the standard sequen-
tial Java programming model.

2.2.4.1 DSTM2

From the work of Herlihy et al. comes DSTM2 [HLM06]. This framework is built on
the assumption that multiple concurrent threads share data objects. DSTM2 manages
synchronization for these objects, which are called Atomic Objects. A new kind of thread
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1 class Node {
2 int value;
3 Node next;
4

5 int getValue() {
6 return value;
7 }
8 void setValue(int v) {
9 value = v;
10 }
11 Node getNext() {
12 return next;
13 }
14 void setNext(Node n) {
15 next = n;
16 }
17 }

(a) Node class.

1 class List {
2 Node root = new Node();
3

4 boolean insert(int v) {
5 Node newNode = new Node();
6 newNode.setValue(v);
7 newNode.setNext(root.getNext());
8 root.setNext(newNode);
9 }
10 }

(b) insert method.

1 List list = ...;
2 int v = ...;
3 list.insert(v);

(c) Invoking insert.

Figure 2.4: Standard sequential Java programming model.

is supplied that can execute transactions, which access shared Atomic Objects, and pro-
vides methods for creating new Atomic Classes and executing transactions.

Perhaps the most jarring difference from the standard programming model lies on the
implementation of the Atomic Classes. Instead of just implementing a class, this process
is separated in two distinct phases:

Declaring the interface. First we must define an interface annotated as @atomic for
the Atomic Class to satisfy. This interface defines one or more properties by declar-
ing their corresponding getter and setter. These must follow the convention signatures
T getField() and void setField(T t), which can be thought as if defining a class
field named field of type T. Additionally, this type T can only be scalar or atomic. This
restriction means that Atomic Objects cannot have array fields, so an AtomicArray<T>

class is supplied that can be used wherever an array of type T would be needed, in order
to overcome this.

These methods, as implemented in the next phase, will play the roles of the previously
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1 @atomic
2 interface INode {
3 int getValue();
4 void setValue(int v);
5 INode getNext();
6 void setNext(INode n);
7 }

(a) INode interface.

1 class List {
2 static Factory<INode> fact =
3 dstm2.Thread.makeFactory(INode.class);
4 INode root = fact.create();
5

6 void insert(int v) {
7 INode newNode = fact.create();
8 newNode.setValue(v);
9 newNode.setNext(root.getNext());

10 root.setNext(newNode);
11 }
12 }

(b) insert transaction.

1 List list = ...;
2 int v = ...;
3 dstm2.Thread.doIt(new Callable<Void>() {
4 public Void call() {
5 list.insert(v);
6 return null;
7 }
8 });

(c) Invoking insert.

Figure 2.5: DSTM2 programming model.

presented {read,write}Tx operations in their respective fields. In Figure 2.5a we define
the INode interface on these terms.

Implementing the interface. The interface is then passed to a transactional factory con-
structor that returns a transactional factory capable of creating INode instances, which is
charged with ensuring that the restrictions presented in the previous phase are met. This
factory is able to create classes at runtime using a combination of reflection, class loaders,
and the Byte Code Engineering Library (BCEL) [Fou12a], a collection of packages for dy-
namic creation or transformation of Java class files. This means that Atomic Objects are
no longer instantiated with the new keyword, but by calling the transactional factory’s
create method.

In the example in Figure 2.5b, the transactional factory is obtained in line 2, and an
atomic object is created in line 7.

Also important is how transactions are defined. In DSTM2 any method can be a trans-
action, and the latter are very similar to regular methods. The major difference is that
Atomic Objects are instantiated by calling the factory’s create method (see Figure 2.5b).

Lastly, in Figure 2.5c, we inspect how does invoking a method differ from invoking
a transaction. DSTM2 supplies a new Thread class that is capable of executing methods
as transactions. Specifically, its doIt method receives a Callable<T> object whose call
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1 class Node {
2 VBox<Integer> value = new VBox<Integer>(new Integer(0));
3 VBox<Node> next = new VBox<Node>(null);
4

5 int getValue() {
6 return value.get();
7 }
8 void setValue(int v) {
9 value.put(v);
10 }
11 Node getNext() {
12 return next.get();
13 }
14 void setNext(Node n) {
15 next.put(n);
16 }
17 }

(a) Node class.

1 class List {
2 Node root = new Node();
3

4 @Atomic
5 boolean insert(int v) {
6 Node newNode = new Node();
7 newNode.setValue(v);
8 newNode.setNext(root.getNext());
9 root.setNext(newNode);
10 }
11 }

(b) insert transaction.

1 List list = ...;
2 int v = ...;
3 list.insert(v);

(c) Invoking insert.

Figure 2.6: JVSTM’s programming model.

method body will be executed as a transaction, wrapped in the {start,commit}Tx loop.

All things considered, DSTM2’s programming model is very intrusive when com-
pared to the sequential model in Figure 2.4. Atomic Classes cannot be implemented
directly, instead an @atomic interface must be declared (Figure 2.5a). The instantiation of
Atomic Objects is not done through the new keyword, but by calling the create method
of the transactional factory (Figure 2.5b). And finally, to start a transaction is a rather ver-
bose process. We wrap the transaction’s body in the call method of a Callable object
that is passed as argument to the dstm2.Thread.doIt method (Figure 2.5c).

Not apparent in Figure 2.5 but nonetheless important is the issue of arrays in Atomic Ob-
jects, as they need to be replaced by instances of the AtomicArray<T> class.
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2.2.4.2 JVSTM

Cachopo et al. proposed Versioned Boxes as the basis for memory transactions [CRS06].
They leverage Multiversion Concurrency Control [BG83] to avoid the abortion of read-
only transactions by using special locations that keep a tagged sequence of values – Ver-
sioned Boxes. This sequence of values is the history of the box, whose changes have been
made by committed transactions and tagged accordingly.

Versioned Boxes enable the serialization of read-only transactions based on the values
the read boxes held at the transactions’ start. By only reading values consistent with the
version at its start, a read-only transaction is serialized before any updating transactions
that eventually commit while the read-only transaction is executing.

Implementing classes to be modified through transactions is more straightforward
than in DSTM2, as the only difference lies in the use of the Versioned Boxes, which are
implemented as the VBox class. Any object that we intend to share is wrapped in a VBox,
as depicted in Figure 2.6a, and its accesses replaced by the use of the boxes’ get and
put methods. These methods will act as the {read,write}Tx operations, and get will
access the expected version of the box according to the current transaction. It is worth
clarifying that calls to either get or set outside the context of a transaction will execute
as an on the fly created transaction comprised of only one operation, the read or write
respectively, thus achieving Strong Atomicity (§ 2.2.1).

While the use of the Decorator Pattern [GHJV94] makes a lot of sense in this case,
using primitive arrays presents some issues. Take int[] for example. It can be used as
a VBox<Integer>[], in which case the actual array is not under the control of the STM
and therefore the programmer must take care of synchronization by his own means. This
approach incurs in high overhead as each array position now holds an object and its
history, instead of a simple int.

Instead of wrapping each array position with a VBox, the entire array can be versioned
as one, as in VBox<int[]>. This alternative is only suitable for read-oriented workloads,
as disjoint writes to the array will conflict, and keeping the array versions is very expen-
sive because a complete copy of the array is kept for each version, even when only a
single position was written.

Transaction definition, as seen in Figure 2.6b, is as simple as annotating the methods
that should be executed as a transaction with @Atomic. These methods are then post-
processed, having their bodies wrapped with the boilerplate transaction calls. Therefore,
transaction invocation is no different than regular method invocation (Figure 2.6c).

JVSTM’s programming model certainly is a step forward in terms of invasiveness
compared to DSTM2’s. Programming classes whose objects are to be accessed within a
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1 class Node {
2 int value;
3 Node next;
4

5 int getValue() {
6 return value;
7 }
8 void setValue(int v) {
9 value = v;
10 }
11 Node getNext() {
12 return next;
13 }
14 void setNext(Node n) {
15 next = n;
16 }
17 }

(a) Node class.

1 class List {
2 Node root = new Node();
3

4 @Atomic
5 boolean insert(int v) {
6 Node newNode = new Node();
7 newNode.setValue(v);
8 newNode.setNext(root.getNext());
9 root.setNext(newNode);
10 }
11 }

(b) insert transaction.

1 List list = ...;
2 int v = ...;
3 list.insert(v);

(c) Invoking insert.

Figure 2.7: Deuce’s programming model.

transaction is very similar to programming regular classes.The difference lies in wrap-
ping fields that will potentially be accessed concurrently within VBoxes, as depicted in
Figure 2.6a. As such, access to these fields must be done through their get and put

methods, as opposed to the usual read and assignment.
Transaction demarcation is done at method definition, using the @Atomic annotation

as in Figure 2.6b, instead of at method calling as in DSTM2. The use of such annotation
abstracts the {start,commit}Tx loop in a very compact way, akin to the atomic block
(Figure 2.3b). But the requirement to access boxes through their specific methods (get,
put) ultimately fails to hide the {read,write}Tx operations.

2.2.4.3 Deuce

Product of more recent work is the Deuce framework [KSF10]. Korland et al. aimed for
an efficient Java STM framework that could be added to existing applications without
changing its compilation process or libraries.

In order to achieve such non-intrusive behaviour, it relies heavily on Java Bytecode
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manipulation using ASM [Con12], an all-purpose Java Bytecode manipulation and anal-
ysis framework that can be used to modify existing classes or dynamically generate
classes, directly in binary form. This instrumentation is performed dynamically as classes
are loaded by the JVM using a Java Agent [Ora12]. Therefore, implementing classes to
be modified through transactions is no different from regular Java programming (Fig-
ure 2.7a), as Deuce will perform all the necessary instrumentation of the loaded classes.

To tackle performance-related issues, Deuce uses sun.misc.Unsafe [sun12], a col-
lection of methods for performing low-level, unsafe operations. Knowing this is going
to be relevant in the following paragraphs describing the instrumentation performed,
namely for why fields are identified by the Deuce runtime the way they are. Using
sun.misc.Unsafe allows Deuce to directly read and write the memory location of a field
f given the 〈O, fo〉 pair, where O is an instance object of class C and fo the relative posi-
tion of f in C. This pair uniquely identifies its respective field, thus it is also used by the
STM implementation to log field accesses.

As a framework, Deuce allows to plug in custom STM implementation, by imple-
menting a Context interface which provides operations whose semantics are that of
{start,read,write,commit}Tx, presented in the beginning of § 2.2.3.

We now briefly present the manipulations performed by Deuce. For each field f in
any loaded class C, a synthetic constant field is added, holding the value of fo. In addition
to the synthetic field, Deuce will also generate a pair of synthetic accessors, a Gf getter and
Sf setter. These accessors encapsulate the {read,write}Tx operations, by delegating
the access to the Deuce runtime (the Context implementation). They pass along the
respective 〈this, fo〉 pair, so the runtime effectively knows which field is being accessed
and can read and write its value using sun.misc.Unsafe.

Other important instrumentation is the duplication of all methods. For each method m

Deuce will create a synthetic method mt, a copy of method m, to be used when in the con-
text of a transaction. In mt, read and write accesses to any field f are replaced by calls
to the synthetic accessors Gf and Sf , respectively. Besides the rewriting of field accesses,
method calls within mt are also instrumented. Each call to any method m′ is replaced
by a call to its transactional synthetic duplicate m′t. The original method m remains un-
changed, to avoid any performance penalty on non-transactional code as Deuce provides
Weak Atomicity (§ 2.2.1).

This duplication has one exception. Each method ma annotated with @Atomic is to
be executed as a transaction (Figure 2.7b). Therefore, after the creation of its ma

t syn-
thetic counterpart, ma is itself instrumented so that its code becomes the invocation of
ma

t wrapped in the {start,commit}Tx transactional loop. The practical effect of this is
that invoking a transaction is simply calling a method, as seen in Figure 2.7c, provided
that the programmer annotates the method with @Atomic, of course.
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In retrospective, Deuce is optimal regarding programming model intrusion, only re-
quiring the @Atomic annotation when compared to the sequential model in Figure 2.4.
Leveraging STM on an existing application using Deuce requires only the annotation of
the desired methods, as all these transformations are performed behind the scenes dy-
namically at class loading.

2.3 Distributed Software Transactional Memory

Similarly to STM, Distributed Software Transactional Memory (DSTM) has been proposed
as an alternative for distributed lock-based concurrency control. As STM proves to be a
viable approach to concurrency control, in order to be used in the enterprise world it is
faced with requirements such as high availability and scalability. And although STM has
received much interest over the last decade in chip-level multiprocessing, only recently
focus on the distributed setting has begun in order to enhance dependability and perfor-
mance.

Several dimensions need to be addressed in order to enable DSTM. First and fore-
most some sort of communication layer is needed, but where will the data be located? How
are transactions validated and committed in the distributed setting? Other dimensions that
need not necessarily be explored include data replication and data and/or transaction
migration. As we will see in this section, several answers to these questions have been
proposed. The communication layers range from Group Communication Systems (GCS)
to regular network messaging. Data is either centralized, distributed or fully replicated,
with transaction validation and commit protocols tailored for each specific model.

Initial work in this field has been focused on the scalability requirement [MMA06,
BAC08, KAJ+08a], while more recent investigation has shifted to replication and the as-
sociated memory consistency protocols [CRCR09, CRR10, CRR11b, CRR11c]. Some ef-
fort has also been made in designing DSTM frameworks, such as DiSTM [KAJ+08a],
HyFlow [SR11], D2STM [CRCR09] and GenRSTM [CRR11a], with the last two address-
ing replication.

In the following subsection we present an overview of the distributed commit and
memory consistency protocols state of the art targeting full data replication.

2.3.1 Distributed Commit and Memory Consistency

While the transaction concept bridges the world of Databases and (D)STM, memory
transactions’ execution time is significantly smaller than database transactions. Mem-
ory transactions only access data in main memory, thus not incurring in the expensive
secondary storage accesses characterizing the latter. Furthermore, SQL parsing and plan
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optimization are also absent in (D)STM. On the other hand this increases the relative cost
of remote synchronization, which should be minimized.

Nonetheless, literature on replicated and distributed databases represents a natu-
ral source of inspiration when developing memory consistency algorithms for DSTM.
Certification-based protocols, in a full replication environment, allow the localization of
transaction execution4, only requiring synchronization among replicas at transactions’
commit time. In the case of read-only transactions no remote synchronization is actually
needed. For write transactions the key ingredients are deferring the updates (§ 2.2.2) of
a transaction until it is ready to commit, and relying on a GCS providing a Total Order
Broadcast (TOB) [DSU04] primitive to disseminate transactions at commit time.

The TOB primitive has the following properties5:

• Validity: if a correct process TO-broadcasts a message m, then it eventually TO-
delivers m;

• Uniform Agreement: if a process TO-delivers a message m, then all correct processes
eventually TO-deliver m;

• Uniform Integrity: for any message m, every process TO-delivers m at most once,
and only if m was previously TO-broadcast by sender(m); and

• Uniform Total Order: if processes p and q both TO-deliver messages m and m′, then
p TO-delivers m before m′, if and only if q TO-delivers m before m′.

Being uniform means that the property does not only apply to correct processes, but also
to faulty ones. For instance, with Uniform Total Order, a process is not allowed to de-
liver any message out of order, even if it is faulty. A broadcast primitive that satisfies
all these properties except (Uniform) Total Order is called a (Uniform) Reliable Broadcast,
(U)RB [DSU04].

We now present certification-based protocols from the literature.

Non-Voting Certification [AAES97]. When a transaction T executing at replica R en-
ters the commit phase, it TO-broadcasts both its write set WS and read set RS. This
means that each replica is able to independently validate and abort or commit T , as they
are in possession of all the necessary information, i.e., bothWS andRS. Note that given
the total ordering of the deliveries, all replicas will process all transactions in the same or-
der, so the result of any transaction’s validation will be the same on all replicas. A sketch
of this Certification protocol can be seen in Figure 2.8a.

4All transaction’s operations execute locally in the single replica where the transaction began executing.
5We denote TO-broadcast and TO-deliver when broadcasting and delivering messages with the TOB

primitive. R-broadcast and R-deliver are analogous but for the Reliable Broadcast primitive.

19



2. RELATED WORK 2.3. Distributed Software Transactional Memory
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(a) Non-Voting.
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Figure 2.8: Certification-based protocols.

Voting Certification [KA98]. The previous scheme requires as single communication
round to commit a transaction, by dissemination both WS and RS. The latter is typi-
cally much larger than the former, thus this protocol explores the trade-off of exchanging
potentially much smaller messages (sinceRS, typically much larger thanWS , is not dis-
seminated) at the expense of requiring two communication rounds instead of just one. It
works as follows. When a transaction T executing at replicaR reaches the commit phase,
it only TO-broadcastsWS . Unlike the Non-Voting Certification onlyR is capable of vali-
dating T , as it is the only replica in possession of bothWS andRS. IfR detects a conflict
during the validation of T , it R-broadcasts a message a (abort) notifying other replicas to
discardWS and aborting T onR. Else, a commit notification c is R-broadcasted instead,
triggering the application ofWS on all replicas. The notification messages a and c need
only be reliably broadcasted (which doesn’t ensure total ordering, thus being cheaper)
because T was already serialized by the TO-broadcast of WS . Figure 2.8b provides a
delineation.

Bloom Filter Certification (BFC) [CRCR09]. As previously stated, the relative overhead
of remote synchronization is much higher in DSTM. This extension of the Non-Voting
scheme proposes the use of Bloom Filters to reduce the size of the broadcasted messages,
as the efficiency of the TOB primitive is known to be strongly affected by the size of the
exchanged messages [KT96, RCR08]. A Bloom Filter [BM03, CRCR09] is a space-efficient
probabilistic data structure that is used to test whether an element is a member of a set.
False positives are possible but false negatives are not, i.e., a query returns “may be in the
set” or “definitely not in the set”. The Bloom Filter is used in this algorithm as follows.
Before T is TO-broadcasted, RS is encoded in a Bloom Filter whose size is computed
to ensure that the probability of a transaction abort due to a Bloom Filter’s false posi-
tive is less than a user-tunable threshold. The validation of transactions checks whether
their Bloom Filter contains any data item updated by concurrent transactions. This infor-
mation (the data items updated by concurrent transactions) needs to be buffered by the
system and periodically garbage-collected.
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Asynchronous Lease Certification (ALC) [CRR10]. Certification schemes are inherently
optimistic: transactions are validated on commit time and may be re-executed an un-
bounded number of times due to conflicts, leading to an undesirably high abort rate. This
is particularly prominent in workloads comprising both short and long-running transac-
tions, in which the latter may be repeatedly and unfairly aborted due to conflicts with a
constant flow of short-running transactions. ALC tackles these issues using the concept
of asynchronous lease. Informally, one can think of a lease as a token which gives its holder
the privileges to manage a given subset of the whole data set. Leases are said to be asyn-
chronous because they are detached from the notion of time, i.e., leases are granted on
an acquire/release-style protocol. The ALC algorithm works as follows. In order for a
transaction T to commit, the replica R where T executed must first successfully obtain
the leases for its accessed items. If T is found to have accessed outdated values, it is
aborted and re-executed without relinquishing the leases. This ensures that T will not be
aborted again due to remote conflicts, as no other replica can update the items protected
by the held leases, assuming T deterministically accesses the same items as in the first
execution.

Polymorphic Self-Optimizing Certification (PolyCert) [CRR11c]. The Voting and Non-
Voting protocols are based on the trade off between communication steps and message
size, respectively. Ergo both are designed to ensure optimal performance in different
workload scenarios and they can exhibit up to 10× difference in terms of maximum
throughput [CRR11c]. To deal with this PolyCert supports the coexistence of the Voting
and Non-Voting/BFC protocols simultaneously, by relying on machine-learning tech-
niques to determine, on a per transaction basis, the optimal certification strategy to be
adopted.

Speculative Certification (SCert) [CRR11b]. With high probability, messages broad-
casted in a local-area network are received totally ordered (e.g., when network broadcast
or IP-multicast are used). This property, called spontaneous total order, is exploited by
the Optimistic Atomic Broadcast (OAB) primitive in order to deliver messages fast [PS03].
SCert leverages on the OAB’s optimistic delivery (corresponding to the spontaneous total
order) to overlap computation with the communication needed to ensure the total order-
ing. Informally, it works as follows. As soon as a transaction T is optimistically delivered,
SCert speculatively certifies T instead of waiting for its final delivery as conventional
certification protocols. If validation is successful, T is said to be speculatively committed,
that is, speculative versions of the data items updated by T are created. Eventually T is
finally committed (its versions are actually written) if the final delivery matches the op-
timistic. If it does not match, T is aborted unless it is still successfully certified in the
new serialization order. Speculative versions of data items are immediately visible to
new transactions, hence tentatively serializing these transactions after the speculatively-
committed ones. This allows an overlap between computation and communication by
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none, the transactions attempt to commit by Compare-
AndSwaping (CASing) their status flags from ACTIVE to
COMMIT. To that scheme an extra step has been added.
The role of this extra step is to guarantee transactional co-
herence on the cluster. The actions taking place at this step
depend on which TM coherence protocol is chosen. For
example, if the TCC protocol is used, then at this step the
transaction’s read/write sets are broadcast to the nodes of
the cluster in order to be validated against the concurrently
running remote transactions. On the contrary, if a lease
scheme is employed, the transaction attempts to acquire a
lease before it commits.

No matter which protocol is used, after finishing this
step, the transaction is aware of whether it is safe for it to
commit or not, based on the returned value.

Each node of the cluster maintains a cached version of
the transactional dataset. Transactions running on each
node read/write from/to the cached dataset. DiSTM is
responsible for keeping the various cached datasets con-
sistent. For brevity, details of how objects are identified
amongst the nodes are omitted, but can be found in [17].

3.2. Remote Communication

The remote communication layer is written in Java and
relies on the ProActive framework [5]. The key concept of
the ProActive framework is active objects. Each active ob-
ject has its own thread of execution and can be distributed
over the network. Based on this primitive, each node has a
number of active objects serving various requests. Depend-
ing on the TM coherence protocol, various active objects
are created on the master and the worker nodes. However,
the number of active objects that constitute the skeleton of
DiSTM are constant. Upon bootstrap, a JVM is created on
every node, including the master node. DiSTM begins exe-
cution on the main thread (instance of the MAIN active ob-
ject) on the master node by creating the necessary structures
on the remaining nodes. The JVM on each worker node
has an instance of the DiSTMClient class (main thread)
which coordinates the execution on the node. In addition, it
is responsible for updating the worker node’s datasets upon
a transaction’s commit, maintaining consistency among the
various copies of the datasets residing on the cluster. The
remaining active objects of DiSTM differ for each protocol,
and are presented along with their implementations (next
section).

4. Distributed TM Coherence Protocols

This section describes the distributed TM coherence pro-
tocols implemented in DiSTM. The first subsection dis-
cusses an equivalent to the decentralized TCC protocol [13],

while the second subsection describes two novel centralized
protocols that utilize leases [12].
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Figure 1. Distributed TM coherence proto-
cols: a) TCC, b) Serialization lease, c) Mul-
tiple leases.

4.1 TCC

TCC performs lazy validation of transactions that at-
tempt to commit. Each transaction that wishes to commit,
broadcasts its read/write sets only once, during an arbitra-
tion phase before committing. All other transactions exe-
cuted concurrently compare their read/write sets with those
of the committing transaction and if a conflict is detected,
one of the conflicting transactions aborts in order for the
other to commit safely. TCC, initially designed for cache-
coherent architectures, has been adopted as a decentralized
TM coherence protocol for DiSTM. In order to maintain
an ordering of the transactions on the cluster, a “ticketing”
mechanism has been employed. Each transaction before
broadcasting its read/write sets, in order to be validated
against transactions running on remote nodes, acquires a
“ticket” (global serialization number) from the master node.
The role of the “ticket” is to assist the contention man-
ager upon a conflict detection between transactions run-
ning on different nodes. The contention management policy

Figure 2.9: DiSTM nodes (taken from [KAJ+08a]).

certifying transactions while the AOB computes the final order, and to detect conflicts
earlier (e.g., upon a read access, if a fresher speculative version of the data item exists)
avoiding wasted computation and time on transactions doomed to abort.

2.3.2 Frameworks

With the recent thrust in DSTM investigation a handful of different memory consistency
schemes have been proposed. It is no surprise that frameworks aimed at facilitating the
development, testing and evaluation of these different protocols were also proposed. We
now describe the existing DSTM frameworks by analysing the new components added
to support the distributed settings and their programming model.

2.3.2.1 DiSTM

In [KAJ+08a] Kotselidis et al. designed a framework for easy prototyping of transactional
memory coherence protocols called DiSTM, which is built on top of DSTM2 [HLM06]. In
this work, one of the nodes acts as a master node where global data is centralised, while
the rest of the nodes act as workers and maintain a cached copy of that global data (Fig-
ure 2.9). Three protocols are presented, whose objective is to maintain the coherence of
these caches.

Communication is made on top of the ProActive framework [BBC+06]. The key con-
cept of the ProActive framework is Active Objects. Each Active Object has its own thread
of execution and can be distributed over the network.

Application-level objects are located in the master node but cached copies exist in all
worker nodes as already stated. Transactions are validated at commit time and they up-
date the global data stored in the master node upon successful validation. The master
node then eagerly updates all cached copies, and any running transactions are aborted if
they fail to validate against the incoming updates.

If the programming model of DiSTM differs from the one of DSTM2, in which it is
based, they have not made it apparent in [KAJ+08a]. Even so, deducing from the fact
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Figure 2.10: Components of a D2STM replica (taken from [CRCR09]).

that data is centralized in the master node and worker nodes maintain local caches of all
objects (in [KAJ+08a] the authors refer to [KAJ+08b] for details), I believe that it is safe to
say that the programming model of DiSTM is the same as in DSTM2.

2.3.2.2 D2STM

Couceiro et al. in D2STM [CRCR09], based on JVSTM [CRS06], have the objective of
leveraging replication not only to improve performance, but also to enhance depend-
ability. Therefore data is replicated across all nodes of the distributed system, and their
contribution features a bloom filter-based replica coordination protocol that enables high
compression rates on the messages exchanged between nodes at the cost of a tunable in-
crease in the probability of transaction abort due to false positives.

The components which constitute a D2STM node can be seen in Figure 2.10. Commu-
nication is achieved through a group communication system implementing a Total Order
Broadcast (TOB) [DSU04] primitive.

In between this communication layer and the STM lies the core component of this
system, the replication manager, which implements the distributed coordination proto-
col required for ensuring replica consistency. It integrates with the STM, whose API was
extended to accommodate so, by having the ability to inspect the internals of transaction
execution, explicitly triggering transaction validation and atomically applying the write
sets of remotely executed transactions.

D2STM’s programming model is not presented in [CRCR09], but since it is aimed at
fully replicated systems we can assume that if all objects are replicated, its model is the
same of JVSTM, on which it is based. If the only objects to be replicated are specified by
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1 class Node extends GenRSTMObject {
2 Box<Integer> value = STMRuntime.getRuntime().getBoxFactory().createBox(
3 new Integer(0));
4 Box<Node> next = STMRuntime.getRuntime().getBoxFactory().createBox(
5 null);
6

7 int getValue() {
8 return value.get();
9 }

10 void setValue(int v) {
11 value.put(v);
12 }
13 Node getNext() {
14 return next.get();
15 }
16 void setNext(Node n) {
17 next.put(n);
18 }
19 }

(a) Node class.

1 class List {
2 Node root = new Node();
3

4 boolean insert(int v) {
5 STMRuntime.getRuntime().begin();
6 Node newNode = new Node();
7 newNode.setValue(v);
8 newNode.setNext(root.getNext());
9 root.setNext(newNode);
10 STMRuntime.getRuntime().commit();
11 }
12 }

(b) insert transaction.

1 List list = ...;
2 int v = ...;
3 list.insert(v);

(c) Invoking insert.

Figure 2.11: GenRSTM’s programming model.

the programmer, then there has to be some (minor) difference.

2.3.2.3 GenRSTM

GenRSTM [CRR11a], like D2STM, is a framework for replicated STMs. From the perspec-
tive of the components added to support the replicated setting, it is identical to D2STM
and seems to be an enhanced version of the latter. Specifically, the STM layer can be ex-
changed as long as it provides an API like the one of JVSTM, based on boxes, and in his
thesis TL2 [DSS06] was also used besides JVSTM.

In his Ph.D. thesis [Car11] several examples are supplied, thus the programming
model is apparent. The fact that multiple backends can be used in the STM layer is
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Figure 1: HyFlow Node Architecture

needed. Based on the object access profile and object sizes,
objects are migrated.

The Instrumentation Engine modifies class code at run-
time, adds new fields, and modifies annotated methods to
support transactional behavior. Further, it generates call-
back functions that work as “hooks” for Transaction Man-
ager events such as onWrite, beforeWrite, beforeRead, etc.

Every node employs a Transaction Manager, which runs
locally and handles local transactional code. The Transac-
tion Manager treats remote transactions and local transac-
tions uniformly. Thus, the distributed nature of the system
is seamless at the level of transaction management.

The Object Access Module has three main tasks: 1) pro-
viding access to the object owned by the current node, 2)
locating and sending access requests to remote objects, and
3) retrieving any required object meta-data (e.g., latest ver-
sion number). Objects are located with their IDs using the
Directory Manager, which encapsulates a directory lookup
protocol (e.g. [5]). Upon object creation, the Directory
Manager is notified and publishes the object to other nodes.
The Migration Module decides when to move an object to
another owner, or keep it locally. The purpose of doing so
is to exploit object locality and reduce the overall commu-
nication tra�c between nodes.

The Transaction Validation Module ensures data consis-
tency by validating transactions upon their completion. It
uses two sub-modules: 1) Contention Manager. This sub-
module is consulted when transactional conflicts occur, to-
ward aborting or postponing one of the conflicting trans-
actions. However, when one of the conflicting transactions
is remote, the contention policy decision is made globally
based on heuristics; and 2) Global Voting handler. Validat-
ing control flow transactions requires a global decision across
all participating nodes, such as by a voting protocol (e.g.,
D2PC [6]). This sub-module is responsible for collecting
votes from other nodes and make a global commit decision.

Figure 2 shows the throughput of the di↵erent schemes at
10-90% read-only transactions, under increasing number of
nodes, which increases contention (with all else being equal).
We observe that HyFlow/D-TL2 outperforms all other dis-
tributed concurrency control models by 40-190%. Complete
details of HyFlow is available in [7].

3. CONCLUSIONS
We presented HyFlow, a high performance pluggable, dis-

tributed STM that supports both dataflow and control flow
distributed transactional execution. Our experiments show
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Figure 2: Bank benchmark throughput over 72 nodes.

that the dataflow model scales well, as it permits remote ob-
jects to move toward geographically-close nodes that access
them frequently, reducing communication costs. Control
flow is beneficial under non-frequent object calls or calls to
objects with large sizes. Our implementation shows that D-
STM, in general, provides comparable performance to clas-
sical distributed concurrency control models, and exports
a simpler programming interface, while avoiding dataraces,
deadlocks, and livelocks. HyFlow provides a testbed for
designing, implementing, and evaluating algorithms for D-
STM. HyFlow is publicly available at hyflow.org.
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Figure 2.12: HyFlow node architecture (taken from [SR11]).

reflected on the creation of a new Box, now achieved through a BoxFactory class that re-
turns the Box object of the STM implementation being used in the STM layer. A notewor-
thy detail is that the programmer explicitly marks which objects are replicated, by having
their class extend the framework-supplied class named GenRSTMObject (Figure 2.11a).

Transactions are explicitly programmed with the begin and commit operations, as
seen in Figure 2.11b, and object access is identical to JVSTM, using the boxes’ get and put.
Thus, the programming model is reminiscent of the basic programming model concept
in Figure 2.3a.

2.3.2.4 HyFlow

HyFlow [SR11] is Java framework for DSTM, with pluggable support for directory lookup
protocols, transactional synchronization and recovery mechanisms, contention manage-
ment policies, cache coherence protocols, and network communication protocols.

Figure 2.12 sketches HyFlow’s architecture. It is comprised of five main components:

Transaction Manager This component embodies the local STM algorithm;

Instrumentation Engine Modifies class code at runtime à la Deuce, for example, modi-
fying annotated methods to support transactional behaviour;

Object Access Module The Object Access Module not only provides access to the objects
owned by the current node, but is able to locate and send access requests to remote
objects;

Transaction Validation Module Ensures data consistency, validating transactions upon
their completion. It encapsulates the contention management policy and the dis-
tributed commit protocol; and

Communication Manager The Communication Manager enables the network commu-
nication between the various nodes of the system.

Since objects can be distributed over the network, normal references cannot be used
to access them. As such, HyFlow demands that any distributed class implements the
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1 class Node
2 implements IDistinguishable
3 {
4 int value;
5 String nextId;
6 String id;
7

8 Node(String id) {
9 this.id = id;

10 }
11 Object getId() {
12 return id;
13 }
14 @Remote
15 int getValue() {
16 return value;
17 }
18 @Remote
19 void setValue(int v) {
20 value = v;
21 }
22 @Remote
23 String getNext() {
24 return nextId;
25 }
26 @Remote
27 void setNext(String n) {
28 nextId = n;
29 }
30 }

(a) Node class.

1 class List {
2 //head sentinel node identifier
3 String final HEAD = ...;
4

5 @Atomic
6 boolean insert(int v) {
7 Locator locator =
8 HyFlow.getLocator();
9 Node root =

10 (Node) locator.open(HEAD);
11 String newNodeId = ...; //gen. UOID
12 Node newNode = new Node(newNodeId);
13 newNode.setValue(v);
14 newNode.setNext(root.getNext());
15 root.setNext(newNodeId);
16 }
17 }

(b) insert transaction.

1 List list = ...;
2 int v = ...;
3 list.insert(v);

(c) Invoking insert.

Figure 2.13: HyFlow’s programming model.

IDistinguishable interface, which consists of a getId()method that returns an unique
object identifier (UOID). Thus, where before fields held regular references, now they must
maintain these UOIDs.

Distributed classes can provide remote methods which can be invoked regardless of
their objects’ location, à la Java RMI. These methods are defined by the programmer,
annotating them with @Remote. These details are depicted in Figure 2.13a.

In order to obtain a reference to a distributed object, a Locator instance from the
Directory Manager component, encapsulating the directory lookup protocol, is used to
retrieve objects given their UOID (Figure 2.13b, lines 6-7).

Transactions are defined as @Atomic-annotated methods akin to previous work we
already presented, as seen in Figure 2.13b, and invoking them is analogous to calling a
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method (Figure 2.13c).

Regarding HyFlow’s programming model we believe that the additional intrusion
introduced when compared to Deuce’s (§ 2.2.4.3), specifically the unique identification
of objects with the IDistinguishable interface and their retrieval through the Locator
object, can be hidden from the programmer using bytecode instrumentation.

2.4 Summary

This Chapter 2 presented the foundation of our work. We started by introducing the
transactional model and its properties (§ 2.1), which led to Software Transactional Mem-
ory (STM), described in § 2.2. We covered its semantics in § 2.2.1 and overview implemen-
tation strategies that can be applied to realise STM (§ 2.2.2). We also examined how can
STM be used by the programmer by introducing it’s programming model (§ 2.2.3) and
the existing state-of-the-art frameworks and programming model they provide (§ 2.2.4).

In § 2.3 we introduced DSTM and the new issues that arise from applying STM to
the distributed setting. We also overview the state of the art in distributed commit and
memory consistency protocols for full replication, in addition to frameworks to support
DSTM.

From all the existing STM frameworks, Deuce stands out as providing an extremely
simple and intuitive programming model. Unfortunately, and as we will see in the next
Chapter, it does not allow the efficient implementation of all STM algorithms, most no-
tably multi-version algorithms.

It is also apparent that no existing DSTM framework provides a programming model
as simple as Deuce’s. Also, each DSTM framework is tied to a concrete distributed mem-
ory model, thus not allowing the fair comparison of DSTM, on the same scenario, under
different distributed memory models.
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3
TribuSTM

This Chapter presents TribuSTM, an extension of the Deuce Java STM framework. We
introduce Deuce and motivate the need for TribuSTM in § 3.1. In § 3.2 we discuss the
metadata placement strategy as provided by Deuce, and afterwards describe the new
strategy featured in TribuSTM (§ 3.3). In § 3.4 we present our solution for n-dimensional
transactional arrays with the new metadata placement strategy. We finish with the eval-
uation of our contribution in § 3.5 and conclude in § 3.6.

3.1 Introduction

Over the last years, several STM algorithms have been proposed. These algorithms asso-
ciate information to each memory location (or object reference) accessed within a trans-
action. This information, which we will from this point on refer to as metadata, is specific
to each algorithm and may be constituted by, e.g., locks, timestamps or lists of values.

Metadata can be stored either in an external data structure that associates the meta-
data with the corresponding memory location (out-place or external strategy), or alongside
the memory location (dubbed in-place strategy).

The external strategy can be implemented using a hash table that pairs the memory lo-
cation to its metadata. If the table is pre-allocated we can avoid the overhead of dynamic
memory allocation, paying instead the cost of evaluating the hashing function. At some
point we might have to resize the table which typically is a very heavy operation, unless
we opt not to resize, in which case we must live with the limitations imposed by not re-
sizing, e.g., have two or more distinct memory locations pairing with the same metadata.
The in-place strategy, in object-oriented programming, is typically implemented with a
twist of the Decorator design pattern [GHJV94] by wrapping the targeted object inside a
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container object which holds both the original object and its associated metadata. While
this allows a very direct and efficient access to the metadata, it is highly intrusive to ap-
plication code, which has to be rewritten in order to use the decorator’s class instead.
This approach does not cope well with primitive and array types, with the first having to
be replaced by their object counterparts while the latter is a very strict structure to which
we can not add metadata.

Deuce (§ 2.2.4.3) is an efficient framework for the Java programming language which
allows the implementation of different STM algorithms using an external strategy for
storing metadata. This approach is suitable for algorithms whose metadata is not strongly
tied to the associated memory location, e.g., locks or timestamps. Algorithms such as
TL2 [DSS06], whose metadata consists of a single lock, can be efficiently implemented
by resorting to an hash table without collision avoidance and using a very fast hash-
ing function. This means that two memory location may in fact be mapped to the same
lock, incurring in false sharing, which results in transactions conflicting in practice even
though they actually should not.

While metadata sharing is not fatal in these cases, it becomes so if we take into account
metadata that is strongly tied to its associated memory location. Consider a multi-version
algorithm, e.g., JVSTM [CRS06], that associates a list of values with each memory location,
building an history of that location’s values. Each of these histories is strongly tied to the
corresponding location, and sharing them is semantically wrong. Hence, and because
we can not afford false sharing, the hash table needs to treat collisions but this imposes a
significant and unacceptable performance overhead [DVL12].

We can conclude that using the external strategy is acceptable when metadata is not
strongly tied to its memory location, that is, the relationship between a location and meta-
data can be N–1. If there must be a 1–1 relation, then the external strategy is unsatisfac-
tory and the in-place strategy is preferred.

In this Chapter we present an extension to Deuce, named TribuSTM [DVL12], that
enables STM algorithms to be implemented with the in-place strategy without changing
the API provided to application programmers, allowing the efficient implementation of
algorithms that could not be implemented so before while maintaining the transparency
Deuce is characterized by. Both the external and in-place strategies are supported, mak-
ing this extension flexible and fully backwards compatible with already existing imple-
mentations of STM algorithms. This in-place strategy is achieved without using the Dec-
orator pattern.

3.2 External Strategy

Deuce provides the STM algorithms with an unique identifier for an object field, a pair
〈O, fo〉, where O is the object reference and fo the field’s logical offset of a field f within
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O. This pair has two use cases, namely (1) it uniquely identifies a field from an object,
hence it can be used by the STM algorithms as a key to any map implementation to
associate object fields with transactional metadata; and (2) using sun.misc.Unsafe it is
possible to read and write directly to the associated memory location.

STM algorithms implement a Context interface, providing methods whose semantics
are that of {start,read,write,commit}Tx, presented in Figure 2.3a. The transactional
access methods ({read,write}Tx) have 〈O, fo〉 as parameter, allowing them to retrieve
the associated metadata from an external mapping table. The STM algorithm program-
mer is completely free concerning transactional metadata implementation, as there is no
specific class hierarchy to extend, or any rules to follow. In truth, the existing TL2 imple-
mentation that comes bundled with Deuce, at this time, implements the mapping table
as an array of integers, each of them used as a versioned lock.

1 class C {
2 int[] f1;
3

4 String f2;
5

6

7

8

9

10

11

12 C() {
13 f1 = new int[2];
14 ...
15 }
16 @Atomic int m1() {
17 f2 = "a";
18 ...
19 }
20

21

22

23

24 int[] m2(int i) {
25 f1[i] = f1[i] + 1;
26 ...
27 }
28

29

30

31

32

33 }

(a) Before.

1class C {
2int[] f1;
3static final long f1_o;
4String f2;
5static final long f2_o;
6

7static {
8f1_o = ...;
9f2_o = ...;
10}
11

12C() {
13f1 = new int[2];
14...
15}
16int m1() {
17// retry loop
18

19}
20int m1(Context ctx) {
21ctx.writeTx(this, f2_o, "a");
22...
23}
24void m2(int i) {
25f1[i] = f1[i] + 1;
26...
27}
28int[] m2(int i, Context ctx) {
29int aux = ctx.readTx(f1, i);
30ctx.writeTx(f1, i, aux + 1);
31...
32}
33}

(b) After.

Figure 3.1: Example of the modifications made for the external strategy.
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To summarise, Deuce performs the following instrumentation of the Java bytecode.
Let C = {f1, . . . , fi,m1, . . . ,mj} be a class C with fields {fx : 1 ≤ x ≤ i} and methods
{my : 1 ≤ y ≤ j}. For each field fx a new field fo

x is added, whose value is the logical off-
set of fx. For each method my a modified version mt

y is added, in which reads and writes
have been replaced by transactional accesses through the runtime. If my is @Atomic-
annotated, it is replaced by a retry loop calling mt

y in the context of a new transaction.
After all transformations we have

C = {f1, fo
1 , . . . , fi, f

o
i , . . . ,m1,m

t
1, . . . ,mj ,m

t
j}

Figure 3.1 provides an example, with the modifications highlighted. We can see the cor-
responding fo field (Lines 3 and 5 in Figure 3.1b) for each field in the original class (Lines
2 and 4 in Figure 3.1a). For each method in the original class (Lines 16 and 24 in Fig-
ure 3.1a), we can see the corresponding mt version on Lines 20 and 28 in Figure 3.1b.
Additionally, as m1 is annotated with @Atomic (Line 16, Figure 3.1a), we can see that its
code has been replaced with the transactional loop (Lines 16 and 17, Figure 3.1b).

3.3 TribuSTM and the In-Place Strategy

To eliminate the indirection introduced by the external mapping between a field f and
it’s metadata, henceforth denoted fm, the runtime must provide the STM algorithm not
with 〈O, fo〉, but with fm itself. To accomplish this we directly inject fm in C, to be
used instead of 〈O, fo〉. Algorithms following the in-place approach implement a slightly
altered API (ContextMetadata) regarding the transactional access methods, which have
as parameter fm instead of 〈O, fo〉.

This approach contrasts with the Decorator pattern [GHJV94], where primitive types
must be replaced with their object equivalents (e.g., an int field is replaced by an Integer

object). Our transformation keeps the primitive-typed fields untouched, simplifying the
interaction with non-transactional code, limiting the code instrumentation and avoiding
the overheads of autoboxing.

Since Deuce supports multiple STM algorithms (which have different metadata), and
algorithms are chosen at execution time through parameterization, one can question how
does the instrumentation process “know” which metadata classes to inject. Our solution
for this issue is twofold. For algorithms using the in-place strategy, their transactional
metadata classes must extend a common super class, TxMetadata. Objects from this class
hold the corresponding 〈O, fo〉 to read and write the associated field. The algorithm’s
implementation must also specify its metadata classes through a @InPlaceMetadata an-
notation. The instrumentation process inspects the @InPlaceMetadata annotation of the
chosen algorithm to be aware of what to inject.

32



3. TRIBUSTM 3.3. TribuSTM and the In-Place Strategy

1 class MyContext implements Context {
2 void writeTx(Object obj, long f_o, T val) {
3 // obtain the metadata from the table
4 // do whatever...
5 }
6

7 T readTx(Object obj, long f_o) {
8 // obtain the metadata from the table
9 // do whatever...

10 }
11 ...
12 }

(a) External metadata interface.

1 @InPlaceMetadata(class=MyMetadata)
2 class MyContext implements ContextMetadata {
3 void writeTx(TxMetadata f_m, T val) {
4 // do whatever...
5 }
6

7 T readTx(TxMetadata f_m) {
8 // do whatever...
9 }

10 ...
11 }

(b) In-place metadata interface.

Figure 3.2: Algorithm implemented with both interfaces.

An example of the differences between the external and in-place strategy interfaces
can be seen in Figure 3.2. In this example, the instrumentation process is aware that the
injected fm fields should be of type MyMetadata, as specified in the @InPlaceMetadata

annotation (Line 1, Figure 3.2b). In the in-place strategy interface (Figure 3.2b), the
{read,write}Tx callbacks take the metadata as a direct parameter (Lines 3 and 7, Fig-
ure 3.2b), while the external strategy, in Figure 3.2a, takes the 〈O, fo〉 pair (Lines 2 and 7)
and needs to access the external table to fetch the metadata.

Also please note that we informally use T where there should be a version of each
method for every Java primitive type.1

To summarise, TribuSTM performs the following instrumentation of the Java byte-
code. Let C = {f1, . . . , fi,m1, . . . ,mj} be a class C with fields {fx : 1 ≤ x ≤ i} and
methods {my : 1 ≤ y ≤ j}. For each field fx, besides fo

x , a new field fm
x is added to

reference the transactional metadata object associated with fx. Method transformations
are essentially the same as in § 3.2, with the notable exception of constructors and static
initializers. The creation and initialization of the fm

x metadata fields’ objects are injected in

1int, long, float, double, short, char, byte, boolean and Object.
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these. The transactional versions mt
y are adapted to call the transactional access methods

using fm
x instead of 〈O, fo

x〉. After the transformations we have

C = {f1, fo
1 , f

m
1 , . . . , fi, f

o
i , f

m
i , . . . ,m1,m

t
1, . . . ,mj ,m

t
j}

Figure 3.3 exemplifies the result of the transformations as if executing the algorithm
in Figure 3.2b. Besides the fo fields are described before, we can see the additional fm

fields (Lines 4 and 7, Figure 3.3b), and their initialisation (Lines 23 and 24). In Line 31
the writeTx callback in depicted, taking metadata as an argument. Modifications with
respect to arrays (e.g., Lines 2, 15-21, 34, 38) are covered in the next Section.

3.4 Metadata and Arrays

In § 3.2 we have seen how the runtime uses 〈O, fo〉 in the external metadata strategy to
uniquely identify field f in object O. Array cells are also uniquely identified by the array
reference A and the index i of that cell, 〈A, i〉, as the index i already represents the cell’s
logical offset within A. Therefore, from the runtime’s point of view, array cells and fields
are indistinguishable.

In § 3.3 we described the in-place metadata approach and its implementation, inject-
ing fm inside classes. This poses a problem for arrays, specially arrays of primitive types,
given their very strict structure: each array cell contains a single value of a well defined
type.

A naive solution for storing in-place metadata in arrays. An ideal solution would be
to have an array in which cells are records with two members, value for the actual stored
data and the metadata member. While we can not change the array structure itself to
match our requisite, we can manipulate the type of the array cells. Let T be the set of
all Java primivite types. For each t ∈ T , let Cellt = {v, vm} be a class with fields v and
vm for the stored value and metadata, respectively, where v is of type t (Figure 3.4b). We
replace all t[] by Cellt[] (a transactional array) and adjust the code accordingly.

To implement this solution, in addition to the already performed bytecode modifica-
tions to support in-place metadata in objects (§ 3.3), the following are also applied:

• replace type in class field declarations;

• replace type in local variable declarations;

• update signature of methods receiving and/or returning (multi)arrays;

• replace non-transactional accesses to t[i] with Cellt[i].v;

• pass the array cell metadata, Cellt[i].v
m, to the transactional access callbacks;
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1 class C {
2 int[] f1;
3

4

5 String f2;
6

7

8

9

10

11

12

13

14 C() {
15 f1 = new int[2];
16

17

18

19

20

21

22 ...
23

24

25 }
26 @Atomic int m1() {
27 f2 = "a";
28 ...
29 }
30

31

32

33

34 int[] m2(int i) {
35 f1[i] = f1[i] + 1;
36 ...
37 }
38

39

40

41

42

43 }

(a) Before.

1class C {
2ArrayInt f1;
3static final long f1_o;
4MyMetadata f1_m;
5String f2;
6static final long f2_o;
7MyMetadata f2_m;
8

9static {
10f1_o = ...;
11f2_o = ...;
12}
13

14C() {
15f1 = new ArrayInt();
16f1.a = new int[2];
17f1.a_m = new MyMetadata[2];
18for (int i = 0; i < 2; i++) {
19f1.a_m[i] =
20new MyMetadata(f1.a, i);
21}
22...
23f1_m = new MyMetadata(this, f1_o);
24f2_m = new MyMetadata(this, f2_o);
25}
26int m1() {
27// retry loop
28

29}
30int m1(Context ctx) {
31ctx.writeTx(f2_m, "a");
32...
33}
34ArrayInt m2(int i) {
35f1.a[i] = f1.a[i] + 1;
36...
37}
38ArrayInt m2(int i, Context ctx) {
39int aux = ctx.readTx(f1.a_m[i]);
40ctx.writeTx(f1.a_m[i], aux + 1);
41...
42}
43}

(b) After.

Figure 3.3: Example of the modifications made for the in-place approach.
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2 3 5

(a) Primitive.

v = 2

v_m

v = 3

v_m

v = 5

v_m

CellInt

(b) Naive solution.

2 3 5
a

a_m

ArrayInt m m m

(c) Efficient solution.

Figure 3.4: The different array types.

• replace type in array casts; and

• replace type in (multi)array initialization, and initialise each Cellt.

Without low-level support, the overhead of the in-place strategy on arrays is inher-
ent, as there is no getting around replacing a primitive array with an array of objects.
Regardless, there is a more fundamental issue with this solution: the overhead imposed
on non-instrumented (hence also non-transactional) code.

Consider application code invoking Java platform or third-party non-instrumented
libraries. For example, the Arrays.binarySearch(int[], int) method from the Java
platform. The Java core classes, and any other non-instrumented libraries, are oblivious
to our transactional arrays, hence we need to recreate an int[] from the data in Cellint[]

and pass the int[] as argument to the method. The method itself is a black box from our
point of view, therefore we do not know if any element in int[] was modified.2 Unless
we were to build some kind of black/white list with such information for all methods,
the only solution is to copy the values from int[] back into Cellint[]. All these memory
allocation and copies significantly hamper the performance of non-transactional code,
which should not be afflicted due to transactional-related instrumentation.

An efficient solution. The problem with the approach just described arises from the
disappearance of the original primitive array, which is completely superseded by its trans-
actional counterpart. Therefore, besides having per array cell metadata we also want to
keep the original array ready for any non-transactional access, bypassing the need for the
costly memory copy operations.

Our improvement is as follows. Let T be the set of all Java primivite types. For each
t ∈ T , let Arrayt = {a, am} be a class with a field a of type t[] (the original array),
and a field am, an array of metadata objects (Figure 3.4c). Each metadata object in am[i]

2In this example we used the binarySearch method which does not modify the array, but in general
we do not know.
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Figure 3.5: A multiarray strucutre in the the efficient solution.

is associated with the corresponding array cell a[i]. We replace all t[] by Arrayt and
adjust the code accordingly. The bytecode modifications needed are:

• replace type in class field declarations;

• replace type in local variable declarations;

• update signature of methods receiving and/or returning (multi)arrays;

• replace non-transactional accesses to t[i] with Arrayt.a[i];

• pass the array cell metadata, Arrayt.am[i], to the transactional access callbacks;

• replace type in array casts; and

• after a (multi)array initialization, create Arrayt, store the original (multi)array in
Arrayt.a and initialise each metadata object in Arrayt.a

m.

An example of the required transformations can be seen in Figure 3.3. In Lines 15, Fig-
ure 3.3b, we can see the creation of the Arrayint container. Line 16 depicts the Arrayint

container storing a reference to the original array, and Lines 18-21 the initialisation of the
metadata associated with each array cell. In both Lines 34 and 38 the return type has been
changed from int[] to the Arrayint type.

Multidimensional arrays are also accommodated by this solution. Like previously,
let Arraymulti = {a, am, nd} be a class with a field a of type Object, a field am (array of
metadata) and a field nd (next dimension) of type Arrayt[]. Field a references the first
dimension of the original array and each metadata object in am[i] is associated with the
array cell a[i]. Each nd[i] is a transacional array (Arrayt) associated with the original
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Table 3.1: Comparison between primitive and transactional arrays.

Arrays Access nth dimension Objects Non-transactional methods

Primitive n− 1 derefs
n∑

i=1

li−1 -

Naive solution 2n− 1 derefs
n∑

i=1

li−1 + li crp + 2(trt + ln copies) + trp

Efficient solution 2n derefs
n∑

i=1

3li−1 + (i− 1) 1 deref

n (dimensions), l (length)

crp =

n∑
i=1

li−1 allocs (create primitive array)

trp =

(
n∑

i=1

li−1

)
− 1 derefs (traverse primitive array)

trt =

(
n∑

i=1

li−1 + li
)
− 1 derefs (traverse naive transactional array)

2nd-dimensional sub-array a[i], and so forth (Figure 3.5).

Table 3.1 provides a comparison between primitive, the naive and efficient solution
for arrays. For accessing any nth-dimensional cell, in a primitive array it takes n − 1

object dereferences (dereferencing all previous dimension arrays except the 1st). In the
naive approach, it takes 2n − 1 dereferences because each cell is now a Cellt, introduc-
ing an extra dereference per dimension. The efficient solution takes 2n, with the extra
dereferencing of initial ArrayObject.

We now analyse how many objects does each approach need for an n-dimensional
array. For simplicity’s sake, let us assume that all arrays have the same length, l. Primitive

arrays have
n∑

i=1
li−1 objects (each dimension’s array cell is a reference to another array,

except in the last dimension). The naive transactional arrays have the same arrays (li−1),
plus an extra Cellt in every array cell (li). The arrays in the efficient solution again have
li−1 arrays (corresponding to the the original array which is kept), and as many Arrayt

and metadata arrays Arrayt.a
m, which totals 3li−1. There are an additional i − 1 arrays

(ArrayObject.nd).

At last, but not least, we consider the usage of each approach when passed as argu-
ment to a non-transactional method. Let us assume that the whole (multi)array is passed,
instead of a specific sub-dimensional part. With primitive arrays, all we have to do is pass
the array reference as argument. The naive approach requires a colossal amount of work,
from creating an equivalent primitive array A (crp) while traversing the naive transac-
tional array (trt) and copying each value to A (ln). A is then passed as an argument, and
after the method returns we must traverse both A (trp) and the naive transactional array
(trt) to write back the values into the naive transactional array (ln). With our proposed
solution, we only need to dereference the root ArrayObject and then pass the reference in
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Figure 3.6: Performance comparison between array types.

the a field to the method, greatly improving upon the naive solution.

3.5 Evalution

To evaluate the efficient solution for transactional arrays, we compare the performance
of the primitive, naive, and efficient solution, on the Skip List microbenchmark included
in Deuce. The various layers of the skip list are implemented with arrays, which makes
this benchmark relevant for our evaluation.

The benchmark was executed in a computer with four hexa-core3 processors. Fig-
ure 3.6 shows the performance of the three array types under three different workloads.
The top graph depicts the throughput (transactions per second) of the system with no
write transactions (0% writes). The left graph shows the throughput with 20% writes,
and the rightmost with 50%.

As expected, the external strategy with primitive arrays (Primitive) has the best per-
formance and scalability, independently of the write rate. On the contrary, the naive
approach (Naïve Solution) is shown to not scale beyond 8 threads with 20% updates, and
4 threads with 50% updates. This differs from the efficient solution (Efficient Solution)
which scales gracefully with the number of threads.

3An hexa-core has 6 cores.
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3. TRIBUSTM 3.6. Summary

We believe that the scalability shown by the efficient solution’s arrays as opposed
to the naive arrays is due to its cache-friendlier nature. The naive approach completely
disrupts the memory layout of the array, unlike the efficient approach which keeps the
originally allocated array.

3.6 Summary

We presented TribuSTM, an extension to the Deuce Java STM framework. Deuce sup-
ports the implementation of STM algorithms following an external placement strategy
for transactional metadata. This approach does not allow the efficient implementation
of all kinds of algorithms, namely those which require a 1-1 mapping between metadata
and the management memory locations. TribuSTM fills this gap by supporting in-place
metadata without any change to the API the framework provides to the applications, by
leveraging on bytecode instrumentation. Therefore, TribuSTM enables fair comparison
between algorithms which previously add to be implemented in frameworks biased to-
wards either of the metadata placement strategies.

In this dissertation we have contributed with a novel solution to allow in-place meta-
data in arrays. We began with a naive approach that imposed an unacceptable overhead
for non-transactional code and, as shown in § 3.5, does not scale. We then proposed a
solution that transparently supports transactional n-dimensional arrays that (1) impose
negligible overhead for non-transactional code; and (2) delivers scalable performance.

Currently, the creation or structural modification of transactional arrays is not sup-
ported outside instrumented code, which is oblivious to the custom structure of the trans-
actional arrays (and metadata). This issue remains an open direction for future work.

The contribution in this Chapter has appeared in the paper “Efficient Support for In-
Place Metadata in Transactional Memory”, Proceedings of the European Conference on
Parallel and Distributed Computing (Euro-Par), 2012 [DVL12], which has been awarded
as a distinguished paper.
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4
Distributed Software Transactional

Memory with TribuSTM

This Chapter presents an extension to TribuSTM (Chapter 3) in order to support Dis-
tributed Software Transactional Memory. We provide an overview in § 4.1, and proceed
to a detailed presentation of our extension in § 4.2. In § 4.4 we describe one implemen-
tation of a replicated Software Transactional Memory using our framework. Finally, we
conclude with a summary in § 4.5.

4.1 Introduction

In Chapter 2 we present the foundation of our work. We start by introducing the trans-
actional model and its properties (§ 2.1), which led to Software Transactional Memory
(STM), described in § 2.2. We cover its semantics in § 2.2.1 and present implementation
strategies that can be applied to realise STM (§ 2.2.2). We end by examining how can
STM be used by the programmer by introducing it’s programming model (§ 2.2.3) and
the existing frameworks (§ 2.2.4).

Despite initially being studied in the context of chip-level multiprocessing, STM’s
benefits over traditional concurrency control methods also make it an attractive model for
distributed concurrency control. We introduce new questions that arise from Distributed
STM (DSTM), such as how do the participants in the distributed system communicate,
where is data and metadata stored and how to access them, and how to validade and
commit transactions in a distributed setting (§ 2.3). In § 2.3.1, we overview the state of
the art regarding how to commit transactions and maintaining memory consistency in
an environment where data is replicated across all nodes of the system. And finally, as
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Figure 4.1: Our framework’s architecture overview.

before, we end by analysing the existing framework solutions for DSTM (§ 2.3.2).

It is not contrived that one would build a DSTM infrastructure by extending an exist-
ing STM framework. In fact, that is what we did. From all the existing frameworks, the
one with the most appealing characteristics, in our perspective, is our Deuce extension
described in Chapter 3. It avoids any changes or additions to the Java Virtual Machine
(JVM) and it does not require language extensions or intrusive APIs. Additionally, the
in-place strategy provides a structured hierarchy for transactional metadata and we have
provided specialized arrays. Furthermore, none of the existing DSTM frameworks fea-
ture a non-intrusive API, which is an objective of ours, and are only tailored for either a
replicated environment or a fully distributed one.

In order to achieve this infrastructure we have to provide support for distributed
objects, means to access them transparently and validating and committing transactions
accessing these objects.

4.2 Putting the D in TribuDSTM

Figure 4.1 depicts the architecture of our system. It intends to provide a flexible frame-
work for DSTM allowing different realisations of the two fundamental software layers
of the architecture, specifically (1) local concurrency control; and (2) distributed commit
and memory consistency.

Local concurrency control is taken care of by TribuSTM. Different STM algorithms
have been shown to be better suited to different workload scenarios, and TribuSTM sup-
ports distinct algorithms transparently from the application’s perspective.

By seeking distributed concurrency control through DSTM, the framework stack is
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augmented with a distributed commit and memory consistency layer, the Distributed
Manager (DM). It is responsible for establishing the distributed (possibly shared) mem-
ory through mechanisms for object distribution, and transaction execution on the dis-
tributed memory. Depending on the distributed memory strategy in use, different algo-
rithms may be used to execute distributed transactions.

Inter-layer compatibility is achieved through well defined interfaces. The Applica-
tion ↔ TribuSTM interface remains unchanged – methods are defined as transactions
with the @Atomic annotation, and transactional versions of methods redirect read and
write accesses to TribuSTM, and so forth.

To support distributed transactions, the DM should be aware of events triggered by
the Application on TribuSTM, such as transactional accesses or commit requests, in order
to take the necessary measures. The DM, as part of its support for distributed transac-
tions and their system-wide commit, might also need to query or alter the state of the
local STM, independently of the STM algorithm being used. These operations make up the
bulk of the TribuSTM↔ DM interface. Distributed objects are achieved with a combina-
tion of metadata concerning objects and the Java Serialization support. In a nutshell, to
serialize an object consists in transforming its state in a sequence of bytes. The opposite
process, deserialization, recreates the object from such sequence. This can be used to send
objects through a network from one computer to another.

A quick note before proceeding to a more in-depth description of our system. STM
algorithms associate metadata to each object’s field to manage concurrency. Our support
for distributed objects also associates metadata with each object to implement a desired
distributed object model. These are clearly two distinct kinds of metadata, thus we shall
refer to both as transactional and distribution metadata, respectively, to disambiguate if
necessary.

4.2.1 Distributed Transactions

In the distributed setting, transaction operations are not necessarily strictly local. De-
pending on the distributed memory model being employed, a transactional read or write
access, or any other operation, might require communication among the system’s partic-
ipants.

Consider, for example, a full replication scenario where transactions are committed
using a Certification scheme as presented in § 2.3.1, Figure 2.8a. Replicas execute trans-
actions locally in an optimistic fashion, only requiring synchronisation when a transac-
tion attempts to commit. In this case the DM is not interested in the transactional read
and write accesses, but the commit request triggers the TO-Broadcast of the transaction’s
read and write set to certify the transaction. If in a non-replicated environment instead,
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Table 4.1: Operations provided by the Reflexive API.

Operation Description

ONSTART(T ) Notifies of the start of transaction T .
ONREAD(T , m) Notifies of the read on transactional metadata m by

transaction T .
ONWRITE(T , m, v) Notifies of the write of value v on transactional metadata

m by transaction T .
ONCOMMIT(T ) Notifies of the commit request issued from transaction T .
ONABORT(T ) Notifies of the abort of transaction T .

transactional read and write operations might trigger a request to the owner of the read-
/written memory location, if such location is not local.

Besides actuating on events from TribuSTM, the DM also needs to retrieve informa-
tion from the state of the STM, or even to modify it. Supposing the same scenario (full
replication), in order for the DM to initiate the Certification protocol it must acquire (at
least) the read and write set of the transaction, and update the STM state according to the
latter if the validation was successful.

The interaction between the DM and TribuSTM is twofold. One aspect deals with
the need for the DM to react to certain events from TribuSTM, while the second aspect
requires the DM to query and/or alter the state of the local STM. These two distinct in-
teractions between the DM and TribuSTM are accomplished through two different APIs.

In the first interface, the Reflexive API (Table 4.1), the DM reacts to events from Tri-
buSTM using the the Observer design pattern [GHJV94]. It subscribes the relevant events
according to the distributed memory model and protocol for distributed transactions
which it is implementing. Specifically, the DM registers callbacks for transaction-related
events such as transaction start (ONSTART), transactional accesses (ONREAD, ONWRITE),
and commit and abort (ONCOMMIT, ONABORT).

The second interface, the Actuator API (Table 4.2), enables the DM to inspect the state
of the local STM and act upon it. The DM can acquire an opaque representation – remi-
niscent of the Memento pattern [GHJV94] – of a transaction’s state (CREATESTATE) which
can be used to recreate the transaction (RECREATETX). The opacity of this representation
is essential in order to support any STM algorithm implemented in TribuSTM. It is also
possible for the DM to explicitly trigger the validation (VALIDATE) and apply the updates
(APPLYWS) of a transaction.

When the DM reaction to an event triggers communication with remote nodes, it
might need to wait for a response, thus blocking the execution. Execution resumes af-
ter the response is received, from which it is notified via callback ({START, READ, WRITE,
COMMIT, ABORT}PROCESSED).
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Table 4.2: Operations provided by the Actuator API.

Operation Description

CREATESTATE(T ) : S Returns a representation of transaction’s T state, com-
posed by its read setRS, write setWS , local identifier id,
in addition to other opaque STM algorithm-dependent
relevant information.

RECREATETX(S) : T Returns a transaction T recreated from state S.
VALIDATE(T ) : bool Validates transaction T returning true or false if success-

ful or not, respectively.
APPLYWS(T ) Applies all updates by transaction T on the local STM.
STARTPROCESSED(T ) Notifies that the start of transaction T has been pro-

cessed.
READPROCESSED(T , v, a) Notifies that the read from transaction T has been pro-

cessed, yielding value v. If a is true a conflict as been
detected, hence T must abort.

WRITEPROCESSED(T , a) Notifies that the write from transaction T has been pro-
cessed. If a is true a conflict as been detected, hence T
must abort.

ABORTPROCESSED(T ) Notifies that the abort request from transaction T has
been processed.

COMMITPROCESSED(T , c) Notifies that the commit request from transaction T has
been processed with outcome c, true or false if success-
fully committed or not, respectively.

Different implementations of the DM can have specific requirements for the Com-
munication System (CS). For instance, the Certification scheme running on a fully repli-
cated memory requires a Group Communication System (GCS) with support for a TO-
Broadcast (Non-Voting and Voting) and R-Broadcast (Voting) primitives. However, if we
have a purely distributed environment (every object has one and only one owner) and
use a pessimistic approach, i.e., lock objects upon access, we only need point-to-point
communication. Therefore, unlike previous approaches to DSTM frameworks, the CS is
not a first-class component like TribuSTM or the DM.

4.2.2 Distributed Objects

Application data accessed in the context of transactions can be purely distributed, or fully
or partially replicated. In Chapter 3 we point out that, in general, STM algorithms asso-
ciate algorithm-dependent transactional metadata to the managed memory. Likewise,
one can envision that several distributed memory (or objects) strategies, such as fully or
partially replicated, or even completely distributed, can also be carried out by combining
some kind of distribution metadata with the memory locations.

For instance, in a fully replicated environment, we want to logically identify a mem-
ory location across the whole system. Each replica should therefore be able to identify
a local memory location as being its representative of a global location. In this case the
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Table 4.3: Operations provided by the Distributed Object API.

Operation Description

GETMETADATA(O) :M Returns the metadataM associated with distributed ob-
ject O.

SETMETADATA(O,M) Associates the metadataMwith distributed object O.
REPLACEOBJECT(O) : D Delegates object D to be serialized instead of distributed

object O.
RESOLVEOBJECT(O) : D Delegates distributed object D to be deserialized instead

of object O.

metadata associated with each memory location should include a Unique Identifier (ID).
A memory location with the same ID on different replicas represents the same global
location. On the other hand, for a purely distributed memory, metadata might be com-
posed of all the necessary information to execute a Remote Procedure Call (RPC) to the
owner of the location in order to perform a transactional access.

Our framework’s support for distributed objects is twofold. One aspect deals with the
association of distribution metadata to objects and means to retrieve it. The other utilises
the Java Serialization support to override how objects are sent to other participants in the
system depending on the distributed memory model.

Metadata. The metadata itself can vary substantially depending on the distributed mem-
ory model employed, so the only requirement is that it implements a DistMetadata

interface. To associate metadata with objects and retrieve it, one can think of several
approaches.

For instance, define an abstract class containing a field of type DistMetadata and
respective getter and setter, from which all application classes should inherit. The draw-
back of this strategy is that Java only supports single inheritance, that is, a class can only
inherit from one super class. Thus, imposing a super class is intrusive and might be
infeasible if the application’s classes hierarchy is complex and using third-party libraries.

Alternatively, instead of forcing a super class one can define a DistributedObject

interface consisting of only the getter and setter for the DistMetadata object (Table 4.3).
This requires the application programmer to explicitly state her classes implement the
interface DistributedObject and provide the implementation of the getter and setter
repeatedly. To get around this, and in line with our objective of non-intrusiveness, our
instrumentation agent automatically injects such code for the application programmer as
follows. Let CI = {f,m} be class C implementing the set of interfaces I, and f and m the
set of fields and methods of C, respectively. C is made to implement DistributedObject,
and a new field fdm of type DistMetadata is added, along with its companion getter and
setter, getMetadata and setMetadata respectively, and their implementation. After all
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transformations we have

CI ∪ DistributedObject = {f, fdm,m, getMetadata, setMetadata}

Serialization. When using the serialization support offered by Java, by default an ob-
ject’s state is transformed in a sequence of bytes that can afterwards be transformed back
into an identical object. Conveniently there is support for a fine manipulation of this
process.

Of particular interest are the methods writeReplace and readResolve from the Java
Serialization API. The first allows an object being serialized to designate another object,
possibly even of a different class, to be serialized in its place, while the latter allows equiv-
alent behaviour but with respect to deserialization instead. That is, the object designated
by writeReplace is in fact the one whose state is transformed in a sequence of bytes (in-
stead of the original), and the object designated by readResolve is the one whose state is
reconstructed from the sequence of bytes and returned. The use of this operations needs
to be carefully thought as to not violate the expected classes.

The key idea is that distributed objects are serialized in function of its distribution
metadata, so different implementations of the DM might serialize objects differently ac-
cording to their distributed memory model.

For example, consider the full replication environment where objects are associated
with an identifier id – its distribution metadata! – that uniquely identifies the object
system-wide. Using a Certification protocol to commit transactions, the transaction’s
read and write set are sent to all replicas, hence being serialized to be disseminated
through the network. Using the default serialization provided by Java, when both sets are
deserialized at each replica they will be populated with freshly created objects which are
not the local representatives with identifier id on the replica. The correct behaviour would
be to replace all objects o in the read and write sets with the existing local representatives
r such that o.id = r.id. This way each replica manipulates the correct local representative
of any distributed object. Other schemes might require different (de)serialization algo-
rithms, e.g., in a distributed memory setting, serializing a proxy object which redirects
accesses to the real object.

To implement such behaviour, distributed objects are injected with the writeReplace
and readResolve methods. The flexibility to (de)serialize them accordingly to the spe-
cific DM implementation is achieved by inserting hooks (REPLACEOBJECT, RESOLVEOB-
JECT, Table 4.3) in writeReplace and readResolve respectively, delegating the process
to the DM.

To summarise, the following instrumentation of the Java bytecode is performed to
support distributed objects. Let CI = {f,m} be class C implementing the set of interfaces
I, and f and m the set of fields and methods of C, respectively. C is made to implement
DistributedObject, and a new field fdm of type DistMetadata is added, along with
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the implementation of its companion getter and setter, getMetadata and setMetadata re-
spectively. To conclude, the methods writeReplace and readResolve are implemented by
delegating its functionality to the DM. The final result is

CI ∪ DistributedObject =

{
f, fdm,

m, getMetadata, setMetadata, writeReplace, readResolve

}

4.3 On the Implementation of a Distributed STM

In this Section we reason on how to implement a distributed STM using the framework
presented in § 4.2.

Consider that distributed metadata is composed of two pieces of information, (1) a
unique identifier, id; and (2) the address of the node which owns the object associated
with the metadata, owner. Let id(O) and owner(O) denote the id and owner of a dis-
tributed object O, respectively. If a distributed object O is created at node N , owner(O)
is set to N .

Let host(T ) denote the node where transaction T executes, and id(T ) the unique
identifier of T . Let proxyn(id) denote the proxy transaction of T on node n such that
id(T ) = id, and consider, for simplicity, that every node contains a proxy transaction for
every transaction which is currently executing in the system.

When a transaction T issues a read access on transactional metadata m (ONREAD,
Table 4.1), if owner(m) = host(T ) the read access is a regular, local, access. Otherwise,
host(T ) sends message [id(T ), id(m)], henceforth rd, to owner(m), and awaits response.
When owner(m) receives rd, it resolves id(m) to m, issues a local read on m on behalf of
proxyowner(m)(id(T )), and responds to host(T ) with message [id(T ), v, a] where v is the
value read and a is true if there has been a conflict. When host(T ) delivers the response
message, the execution of T is resumed (READPROCESSED, Table 4.2). A write access
behaves similarly.

When T requests to commit (ONCOMMIT, Table 4.1), host(T ) sends a message to all
nodes to trigger the validation of proxyn(id(T )) on each node n (VALIDATE, Table 4.2). All
nodes respond with the result of the validation. Once host(T ) has collected all validation
results, if none of the validations failed, a message is sent to all nodes instructing the
commit of each proxyn(id(T )). If at least one validation was unsuccessful, all nodes are
instructed to discard their proxies and T aborts.

Informally, the key idea is that the read and write set of T are distributed across nodes,
according to the locality of the accessed objects.

This is a simple approach, thus there are various optimisations to consider, e.g., cre-
ating transaction proxies on demand only on strictly necessary nodes, caching to reduce
network communication.
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Table 4.4: Interface provided by the GCS to the DT.

Operation Description

TOBCAST(m) TO-Broadcasts message m.
RBCAST(m) R-Broadcasts message m.
SELF(s) : bool Returns true if sender s is the local replica, false other-

wise.

Table 4.5: Interface provided by the DT to the GCS.

Operation Description

ONTODELIVER(m, s) Notifies of the delivery of message m which has been TO-
Broadcasted by sender s.

ONRDELIVER(m, s) Notifies of the delivery of message m which has been R-
Broadcasted by sender s.

4.4 Implementing a Replicated STM

In the context of this dissertation we implemented, using the proposed framework, a
replicated STM which targets an environment where objects are fully replicated among
all participants, henceforth replicas, of the distributed system. Transactions are committed
across the system using the Non-Voting Certification scheme as seen in Figure 2.8a. This
replicated STM implementation is a concrete realisation of the DM component of our
architecture (Figure 4.1).

Certification schemes rely on a Total Order Broadcast (TOB) primitive to disseminate
transactions at commit time. The total ordering of transactions imposed by the TOB en-
sures 1-Copy Serializability, i.e., that the transaction execution history across the whole
set of replicas is equivalent to a serial transaction execution history on a single not repli-
cated STM.

4.4.1 Communication System

Several Group Communication Systems (GCS) exist that provide the TOB primitive. We
created a simple API between the Distributed Transactions (DT) component and the
(Group) Communication System (Figure 4.1) in order to assess the impact of different
providers for the TOB in the system evaluation.

From the GCS side (Table 4.4), it provides the TOB primitive (TOBCAST) and an op-
eration to test whether a message was sent from the local replica (SELF). To be notified
of incoming messages, the DT subscribes to the deliveries using the Observer pattern
(ONTODELIVER, Table 4.5).
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1: committed← false

2: function COMMIT(T )
3: ONCOMMIT(T )
4: return committed

5: procedure COMMITPROCESSED(T , c)
6: committed← c
7: T was processed

(a) TribuSTM.

8: localTxs← ∅

9: procedure ONCOMMIT(T )
10: localTxs← localTxs[T .id 7→ T ]
11: S ← CREATESTATE(T )
12: TOBCAST([S])
13: wait until T is processed

14: procedure ONTODELIVER([S], s)
15: if SELF(s) then
16: T ← localTxs(S.id)
17: localTxs← localTxs \T .id
18: else
19: T ← RECREATETX(S)
20: valid← VALIDATE(T )
21: if valid then
22: APPLYWS(T )
23: COMMITPROCESSED(T , valid)

(b) Distributed Transactions component.

Figure 4.2: Pseudo-code of the Non-Voting Certification algorithm.

4.4.2 Distributed Transactions

Having specified the interface between the DT component and the GCS, we noew sketch
both the implementation of the Non-Voting and Voting Certification, in Figures 4.2 and 4.3,
with regard to the Reflexive API (Table 4.1), Actuator API (Table 4.2) and the DT↔ GCS
interface (Table 4.4 and 4.5).

Non-Voting Certification. Since Certification-based schemes are optimistic, transactions
execute locally until commit time.

At that instant COMMIT is invoked on TribuSTM (Line 2), which delegates to the DT
by issuing ONCOMMIT. The DT maintains, for local transactions, a mapping between the
transaction’s identifier and the transaction itself (Line 8). When a transaction attempts
to commit, it is added to the map of local transactions (Line 10). We proceed by obtain-
ing the state of the transaction which is subsequently TO-Broadcasted (Lines 11 and 12).
At this point, this thread of execution (the application thread) waits for the transaction
processing to finish.

Upon the delivery of the TO-broadcasted message, the ONTODELIVER callback is
invoked by a thread from the GCS (Line 14). Depending on whether the received trans-
action state is local or remote, the DT either obtains the local transaction (Line 16) or
recreates the remote transaction (Line 19). From this point they can be managed indis-
tinguishably. We validate the transaction (Line 20) and if no conflicts are detected, apply
the transaction’s updates (Line 22). The transaction is now processed, thus we generate
the appropriate notification (Line 23). On the replica where the transaction is local, this
will signal the application thread (Lines 7 and 13) which returns the result of the commit
request (Line 4).
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1: localTxs← ∅
2: pendingTxs← nil: queue of 〈s,S, r〉
3: pendingResults← ∅: set of 〈s, id, r〉

4: procedure ONCOMMIT(T )
5: localTxs← localTxs[T .id 7→ T ]
6: S ← CREATESTATE(T )
7: S.readSet = ∅
8: TOBCAST([S])
9: wait until T is processed

10: procedure ONTODELIVER([S], s)
11: tx← 〈s,S,WAIT〉
12: if ∃res ∈ pendingRes : res.s = s ∧ res.id = S.id then

13: tx.r← res.r
14: pendingRes← pendingRes \ res
15: pendingTxs.queue(tx)
16: PROCESSTX

17: procedure ONRDELIVER([〈id, r〉], s)
18: if ∃tx ∈ pendingTxs : tx.s = s ∧ tx.S.id = id then
19: tx.r← r
20: else
21: pendingRes← pendingRes ∪ 〈s, id, r〉
22: PROCESSTX

23: procedure PROCESSTX
24: if pendingTxs is empty then
25: return
26: tx← pendingTxs.peek()
27: if tx.r = COMMIT ∨ ABORT then

28: pendingTxs.dequeue()
29: if SELF(tx.s) then
30: T ← localTxs(tx.S.id)
31: localTxs← localTxs\tx.S.id
32: else
33: T ← RECREATETX(tx.S)
34: if tx.r = COMMIT then
35: APPLYWS(T )
36: result← true
37: else
38: result← false
39: COMMITPROCESSED(T , result)
40: PROCESSTX
41: else
42: if SELF(tx.s) ∧ tx.r=WAIT then

43: T ← localTxs(tx.S.id)
44: if VALIDATE(T ) then
45: valid← COMMIT
46: else
47: valid← ABORT
48: RBCAST([〈tx.S.id, valid〉])

Figure 4.3: Pseudo-code of the Voting Certification algorithm.

Voting Certification. Voting Certification explores the trade off of broadcasting smaller
messages at the expense of requiring two communication rounds to commit a transac-
tion. Transactions to be processed are identified by the tuple 〈s,S, r〉, where s is the
replica where the transaction executed (the only replica which can validate the trans-
action), S is the transaction’s state and r its validation result. Messages containing the
validation result of transactions are identified by the tuple 〈s, id, r〉, where s is analogous,
id is the transaction’s identifier and r is either COMMIT or ABORT if the validation was
successfull or not, respectively.

When a transaction attempts to commit, the procedure is similar to the Non-Voting
protocol except that the read set is not broadcasted (Line 7, Figure 4.3).

Upon the delivery of the TO-broadcasted transaction (ONTODELIVER), we check if
we have already received the transaction’s validation result (Lines 12-14). Since messages
R-broadcasted, such as the transaction validation result, need not be totally ordered, a
message m R-broadcasted by replica R might be delivered earlier than a message that
R TO-broadcasted before m. If the validation result has already been received the re-
ceived transaction’s tuple is updated accordingly (Line 13). The tuple is then enqueued
for processing, and we process any pending transaction (Lines 15 and 16, respectively).
The order in which transactions arrive, and thus are enqueued, defines their serialization
order.
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Upon the delivery of the validation message (Line 17), we check if we have already
received the corresponding transaction, and if so update its tuple with the result of
the validation (Lines 18 and 19). If the corresponding transaction has not yet been re-
ceived, we buffer the validation message (Line 21). We then process any pending trans-
actions (Line 22).

Processing pending transactions works as follows. A transaction is processed if (1) its
validation result has already been delivered (Line 27); or (2) it is a local transaction wait-
ing to be validated (Line 42).

We peek the next transaction to be processed (Line 26) and if in the presence of
case (1), we dequeue the transaction, recreate the transaction if it is remote (Line 33),
and commit if validation was successful (Line 35). The behaviour is identical to the Non-
Voting scheme. In this case we keep processing transactions in the queue, for they might
also be ready (Line 40).

In case (2), the transaction to be processed is local and is waiting to be validated. We
validate the transaction (Line 44) and R-broadcast the result of its validation on Line 48.

4.4.3 Distributed Objects

When the transaction state is TO-Broadcasted by the Non-Voting protocol (Figure 4.2,
Line 12), its contents are serialized. The full replication serialization strategy devised
guarantees that each replica manipulates its own representatives of the replicated objects.

To identify objects across the system, the distributed metadata assigned to each one is
a Universally Unique IDentifier (UUID [uui12]). This UUID is assigned lazily as needed,
meaning that objects that never cross the boundaries of a single replica are unaffected.

The serialization algorithm can be seen in Figure 4.4 and works as follows. When an
object is being serialized, it invokes OBJECTREPLACE (Line 2). As metadata is assigned
lazily on demand, there are two possibilities: either the object already has already been
assigned a UUID (Line 4) or not (Line 6). An object with an associated UUID is said to be
published, or private otherwise.

If the object is already published, its UUID oid is nominated to be serialized in its
place (Line 5). Type consistency is maintained because the deserialization of oid when de-
livered on each replica will return the local representative on the replica, i.e., the object o
such that GETMETADATA(o) = oid (Line 20)1. Clearly, if every replica already possesses
a local representative of the object being serialized it would be a waste of resources to
disseminate the whole object graph.

If the object is private, a fresh UUID is generated (Line 7) and assigned to the ob-
ject (Lines 8 and 9). In this case the original object itself is serialized. When it is delivered
at each replica, the object is marked as published on the replica (Line 17) and deserialized.

The behaviour on the replica from which the object originated is slightly different, as
the object has already been marked as published (Line 9). Therefore we deserialize the

1Recall that the readResolve method designates a delegate to be deserialized instead of the original
object.
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1: memory← ∅

2: function OBJECTREPLACE(O)
3: oid← GETMETADATA(O)
4: if ∃ oid then
5: return oid
6: else
7: oid← generate fresh UUID
8: SETMETADATA(O, oid)
9: memory←memory[oid 7→ O]

10: return O

11: function OBJECTRESOLVE(O)
12: obj←memory(oid)
13: if ∃ obj then
14: return obj
15: else
16: oid← GETMETADATA(O)
17: memory←memory[oid 7→ O]
18: return O

(a) Object Serializer component.

19: function READRESOLVE(oid)
20: return memory(oid)

(b) Distributed Metadata component.

Figure 4.4: Pseudo-code of the replicated objects’ serialization algorithm.

existing object instead (Line 14).

After a thorough analysis of this algorithm one might question the implications of
using the map in Line 1. By keeping references to both the distributed metadata and the
objects themselves, it prevents them from being garbage-collected when unreachable by
the application, thus incurring in memory leaks.

The solution we implemented is twofold. First, we used the java.util.WeakHashMap
implementation, in which keys (and not values) are held by weak references. Informally, a
weak reference is a reference which does not prevent their referents from being garbage-
collected.

This still does not solve the problem because (1) the value objects themselves strongly
reference the distributed metadata (which are the map keys), therefore preventing them
from being garbage-collected; and (2) the values themselves are strongly referenced, pre-
venting them from being garbage-collected. This is solved by wrapping the value objects
in weak references before being put in the map. This way when an object is unreachable
by the application it can be garbage-collected from the map, which in turn makes the
associated key also unreachable, thus also being garbage-collected.

4.4.4 Bootstrapping

In the previous Section we described the implementation of a fully replicated STM which
uses a Certification scheme to commit transactions, using the clearly defined APIs of our
framework.
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1 class Benchmark {
2 @Bootstrap(id = 1)
3 private static RBTree tree;
4

5 @Atomic
6 public void createTree() {
7 if (tree == null)
8 tree = new RBTree();
9 }

10

11 public static void main(String[] args) {
12 ...
13 createTree();
14 // from this point on, tree references the same object in every replica
15 ...
16 }
17 }

Figure 4.5: Bootstrapping with the @Bootstrap annotation.

The execution model in this environment can either be (1) the same program exe-
cuting in all replicas; or (2) possibly different programs executing in each replica, but
manipulating (some of) the same objects. We have seen in § 4.4.3 that object identifiers
are dynamically generated and assigned on demand. If every object is assigned a unique
identifier, the managed objects are disjoint. We are in the presence of a classic bootstrap-
ping problem. For example, consider a widely used microbenchmark in the literature,
the Red-Black Tree. When the microbenchmark is executed in each replica, it must han-
dle the same tree in every replica. Technically, this translates to the tree reference metadata
having the same identifier in all replicas.

We address this issue using the @Bootstrap annotation. It can be used to denote that
a number of fields are semantically the same, i.e., are replicas of each other, hence their
value is always the same. In the example of the Red-Black Tree microbenchmark, the field
which references the tree is a use case that fits naturally – we clearly want all replicas to
be handling the same tree.

The annotation is used as follows. Its target are fields, and it takes a parameter id
whose value serves as a seed in the identifier generation. Using equal seeds determin-
istically yields the same identifier. Annotating a field overrides the default process of
identifier generation and object publication. Instead of dynamically generating an iden-
tifier and locally publishing the field’s transactional metadata only at serialization time, it
assigns the deterministic identifier to the metadata and locally publishes it immediately.

This gives the practical effect of that field’s transactional metadata being already repli-
cated a priori with the same identifier in all replicas, thus keeping the field’s value consis-
tent across the system when updated (in a transactional context, of course).

Figure 4.5 sketches an example using the annotation. The tree field is semantically
the same in all replicas and it is initialised in the createTree transaction.
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Alternatively, if “same program executing on all replicas” is the only execution model
considered, we can circumvent the need for the programmer to provide an id argument
by generating a seed based on the qualified name of the class and the field’s line number.

Consider that the Benchmark class in Figure 4.5 belongs to the x.y package. Since
tree field is in Line 3, the implicit seed would be x.y.Benchmark3. A seed generated
using this strategy is guaranteed to be unique for any field in any class, but all nodes
generate seeds accordingly, under the assumption that all nodes have the same “version”
of all classes.

4.5 Summary

In this Chapter we described how we augmented the software from Chapter 3 to evolve
from a centralized system to a distributed one. In § 4.2 we presented our framework’s
architecture, its layers and the clearly defined API between them, and how we extend the
local STM layer to support distributed transactions. We also show how we achieve the
flexible support for distributed objects in a completely transparent way to the application.

In § 4.3 we reasoned on how to implement a distributed STM using the APIs of our
framework.

We also provided, in § 4.4, a description of the implementation, in our infrastructure,
of a fully replicated STM using a Certification protocol to maintain consistency when
committing transactions.

This Chapter’s contribution was featured in the paper “Uma Infraestrutura para Su-
porte de Memória Transacional Distribuída”, Proceedings of the Simpósio de Informática
(INForum), 2012 [VDL12].
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5
Evaluation

This Chapter reports the results of an experimental study aimed at evaluating the perfor-
mance of a real replicated STM system implemented in the TribuDSTM framework (as
described in § 4.4), in face of a variety of workloads with different characteristics.

We begin with some considerations with respect to the modularity of our framework,
and the easy, quick, and clean implementation of the Certification protocols in § 5.1. Next,
we present the experimental settings in § 5.2. Then, § 5.3 describes the results obtained
with a common microbenchmark, the Red-Black Tree. Several STAMP benchmarks and
their results are presented in § 5.4.

5.1 Implementation Considerations

We would like to note that implementing both Certification-based protocols was a fairly
easy task given the rich APIs we have defined between TribuSTM and the Distribution
Manager (DM) layer. In reality, the actual implementations closely resemble the pre-
sented pseudo-code in Figures 4.2 and 4.3. The Non-Voting protocol is implemented in
under 100 lines of code (LOC) and the Voting protocol less than 200 LOC. These can in-
distinguishably use the three different Group Communication Systems (GCS) employed
in the the following experiments.

The local STM algorithm, the Certification protocol and the GCS implementations,
can all be replaced and combined as desired without any burden, by simple parameteri-
zation at execution time. The ease of replacing different components of our architecture
highlights its modularity.
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5.2 Experimental Settings

All the experiments presented in this Chapter were performed in a cluster of 8 nodes,
each one equipped with a Quad-Core AMD Opteron 2376 at 2.3Ghz, 4×512KB cache L2,
and 8GB of RAM. The operating system was Debian 5.0.8, with the Linux 2.6.26-2-amd64
kernel, and the nodes were interconnected via a private gigabit ethernet. The max send
buffer was set to 640KB and the max receive buffer to 25MB as needed by the JGroups
configuration. The installed Java Platform was version 6, specifically OpenJDK Runtime
Environment (IcedTea6 1.8.3, package 6b18-1.8.3-2lenny1).

In our infrastructure, the local STM layer uses the TL2 algorithm [DSS06]. The DM
implementation is the Non-Voting Certification described in § 4.4, in which the consis-
tency of the replicated objects when committing transactions is maintained with the Non-
Voting Certification scheme. Read-only transactions are processed strictly locally on the
replica they executed. With regard to the underlying Group Communication System
(GCS) providing the Total Order Broadcast (TOB) primitive needed by the Non-Voting
Certification protocol, three different implementations were considered: Appia [app12],
JGroups [jgr12] and Spread [spr12]. Switching between GCS is done by parameterization
when executing the target program, hence no code rewriting whatsoever is needed.

Appia has been used as the GCS in related work [CRCR09, CRR10, CRR11a, CRR11b].
Its configuration was borrowed from freely available1 GenRSTM source code, and pro-
vides uniform total order through the SequencerUniform protocol.

JGroups is a well-known toolkit used in several projects, e.g., JBoss [jbo12]. It was
configured according to the UDP configuration from the freely available repository2, in
addition to the SEQUENCER protocol which provides non-uniform total order.

Spread differs from the previous in its client-server architecture and being imple-
mented in C, instead of Java. A Spread daemon was deployed on each node. All daemons
belong to the same segment, used the vanilla configuration, and our framework used the
Java API provided by Spread. Message type was set to SAFE_MESS, which guarantees
uniform total order.

The results are obtained from five runs of each experiment configuration, dropping
the highest and lowest result, and averaging the remaining three.

An instance of the replicated STM was deployed on each node. Therefore, in this
Chapter node and replica are synonyms.

5.2.1 On the Implementation of Total Order Broadcast

The three chosen GCS rely on different implementations of the TOB primitive.

1http://code.google.com/p/genrstm
2https://github.com/belaban/JGroups
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Appia provides uniform total order using a fixed sequencer [GLPQ10]. Informally,
in the fixed sequencer algorithm a single node is assigned the role of sequencer and is
responsible for the ordering of messages. Any node n wanting to broadcast message m

first unicasts m to the sequencer, which then broadcasts m on behalf of n. Intuitively,
this algorithm should not be fair with regard to message ordering. The sequencer should
have the upper hand, as it does not need to unicast its messages to itself.

JGroups provides non-uniform total order also using a fixed sequencer. The relax-
ation of the uniformity properity is likely to allow higher throughput, and even more
unfairness, because it does not require all nodes to send back acknowledgements to the
sequencer [GLPQ10]. This contrasts with Appia which has the uniform property, re-
quiring the acknowledgements and thus the sequencer more quickly becomes a bottle-
neck [GLPQ10].

Spread, yet again unlike the others, implements TOB with a privilege-based proto-
col [GLPQ10]. In a nutshell, privilege-based protocols rely on the idea that senders can
broadcast messages only when they are granted the privilege to do so. The privilege to
broadcast (and order) messages is granted to only one node at a time, but this privilege
circulates from node to node in the form of a token [GLPQ10]. This approach is most
likely to achieve fairness, at the expense of throughput, as each node is allowed equal
opportunities to disseminate its messages.

5.3 Red-Black Tree Microbenchmark

Table 5.1: Parameterization of the Red-Black Tree microbenchmark.

Initial size (-i) Value range (-r) Write transactions % (-w)

32 768 (215) 131 072 (4× initial size) 10

To evaluate our framework, we start by considering a common microbenchmark in
the literature, the Red-Black Tree. It is composed of three type of transactions (1) in-
sertions, which add an element to the tree (if not already present); (2) deletions, which
remove an element from the tree (if present); and (3) searches, which search the tree for a
specified element. Insertions and deletions are said to be write transactions.

The microbenchmark was parametrized according to Table 5.1. The tree was popu-
lated with 32 768 pseudo-randomly generated values, ranging from 0 to 131 072, thus
having an height of 15. Each thread executed 10% of write transactions.

The workload is characterised by very small, fast, transactions and contention is very
low.
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Figure 5.1: Throughput on the Red-Black Tree benchmark.

60



5. EVALUATION 5.3. Red-Black Tree Microbenchmark

 0

 20

 40

 60

 80

 100

(2, 1)

(2, 2)

(2, 4)

(4, 1)

(4, 2)

(4, 4)

(6, 1)

(6, 2)

(6, 4)

(8, 1)

(8, 2)

(8, 4)

T
ra

n
s
a

c
ti
o

n
s
 (

%
 f

ro
m

 t
o

ta
l)

(Replicas, threads)

Appia, RBTree (size=32768, update=10%)

(a) Appia.

 0

 20

 40

 60

 80

 100

(2, 1)

(2, 2)

(2, 4)

(4, 1)

(4, 2)

(4, 4)

(6, 1)

(6, 2)

(6, 4)

(8, 1)

(8, 2)

(8, 4)

T
ra

n
s
a

c
ti
o

n
s
 (

%
 f

ro
m

 t
o

ta
l)

(Replicas, threads)

JGroups, RBTree (size=32768, update=10%)

(b) JGroups.

 0

 20

 40

 60

 80

 100

(2, 1)

(2, 2)

(2, 4)

(4, 1)

(4, 2)

(4, 4)

(6, 1)

(6, 2)

(6, 4)

(8, 1)

(8, 2)

(8, 4)

T
ra

n
s
a

c
ti
o

n
s
 (

%
 f

ro
m

 t
o

ta
l)

(Replicas, threads)

Spread, RBTree (size=32768, update=10%)

(c) Spread.

Figure 5.2: Breakdown on the Red-Black Tree benchmark.
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Figure 5.1 shows the throughput of our system (higher is better) on the microbench-
mark, varying the number of replicas and the number of threads per replica. Unsurpris-
ingly, JGroups (Figure 5.1b) achieves the best performance of the three for every combi-
nation, due to both the fixed sequencer implementation and the uniformity relaxation.

Appia (Figure 5.1a) quickly peaks at around half the throughput of JGroups, which
can be explained by the requirements of the uniform property.

Finally, in Figure 5.1c, we have the throughput of the system using Spread. The
linear scalability displayed is consistent with the idea that the algorithm implemented
by Spread achieves fairness. Since every node is provided with equal opportunities to
broadcast and order messages, the system scales either with more threads per node, or
when nodes increase, not incurring in the bottleneck of a fixed sequencer.

To assess the accuracy of our intuitions, in Figure 5.2 we breakdown the contribution
of each replica in the overall throughput. Each color represents one replica. As expected,
Spread (Figure 5.2c) achieves fairness as each replica contributes equally to the system’s
total throughput. This has the practical effect of each replica waiting, on average, the
same time for their transactions to be delivered for certification.

In JGroups (Figure 5.2b) we can observe the exact opposite. There is always one
replica which dominates the system (most likely the sequencer). In practice, this trans-
lates to the sequencer having its messages consistently ordered before everyone else’s,
therefore waiting a negligible amount of time for their delivery.

Appia (Figure 5.2a) exhibits a mixed behaviour. When the intra-replica concurrency
is low, it behaves approximately fair. But as the number of threads grown, the sequencer
starts to dominate.

The behaviour of each GCS remains consistent in the following experiments. Spread
is fair, JGroups is completely unfair, and Appia is moderately fair if intra-replica concur-
rency is low, but the sequencer dominates as more threads are added to each replica.

5.4 STAMP Benchmarks

In this Section we evaluate our system with a more complex set of benchmarks from the
STAMP suite [MCKO08]. The following experiments allow us to test the system with
workloads substantially different from the previous microbenchmark.

5.4.1 Intruder

The Intruder benchmark simulates the detection of network intrusions.

Each thread repeatedly executes 3 phases. The first phase basically involves a simple
FIFO queue from which threads pop a packet. In the second phase threads add the packet
to a dictionary (implemented by a self-balancing tree) that contains lists of packets that
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Table 5.2: Parameterization of the Intruder benchmark.

Attacks (-a) Packets (-l) Flows (-n) Seed (-s)

10 4 2 048 1
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Figure 5.3: Execution time on the Intruder benchmark.

belong to the same flow. If all the packets of a flow have been delivered, they are reassem-
bled and added to the completed packets FIFO queue. The final phase consists of taking
a reassembled packet from the FIFO queue and checking if it has been compromised.

The benchmark was parameterized according to Table 5.2. There were 2 048 flows
with 4 packets each, and 10 of the flows had been attacked.

Transactions under this configuration are small and fast, and the workload is highly
contented, due to both of the FIFO queues and the rebalancing of the tree in the reassem-
bly phase. Thus, this workload distinguishes itself from the the Red-Black Tree’s in the
contention level.

In Figure 5.3 we have the execution time of the benchmark (lower is better) using each
GCS, and varying the number of threads and replicas. As a highly contended workload,
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Figure 5.4: Execution breakdown on the Intruder benchmark.
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Figure 5.5: Abort rate on the Intruder benchmark.
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Table 5.3: Parameterization of the Genome benchmark.

Gene length (-g) Segment length (-s) Total segments (-n)

256 16 16 384

it is expected that the system performs poorly. Using Appia (Figure 5.3a) the system per-
formance degrades as the total number of threads rises, which proportionally increases
the abort rate (Figure 5.5a).

However, JGroups (Figure 5.3b) exhibits constant execution times independently of
the replica-thread combinations. This suggests that the sequencer single-handedly exe-
cutes all the transactions of the benchmark, which is confirmed by the transaction break-
down in Figure 5.4b. The lower abort rate of JGroups (Figure 5.5b) when compared to
Appia’s (Figure 5.5a) and Spread’s (Figure 5.5c) strengthens that, not only did the se-
quencer execute all committed transactions, these transactions were consistently ordered
before any other transactions from the other replicas which experienced incredible la-
tency.

Finally, when using Spread (Figure 5.3c) the benchmark takes around 7× more time
to complete than JGroups. This is not unexpected, given the highly contended workload
and the fact that fairness is achieved at the expense of throughput. Still, the system shows
light scalability for less than 8 threads (in total).

5.4.2 Genome

The Genome benchmark performs gene sequencing, from the bioinformatics domain.
Genome assembly is the process of taking a large number of DNA segments and match-
ing them to reconstruct the original source genome.

The program consists of several steps which are executed sequentially, but inside each
step several threads execute concurrently. But since the steps are sequential, threads wait
for each other when advancing from one step to the next. The last step is completely
sequential (it is executed by a single thread), and there is one step which is a mix of
concurrent and sequential parts.

The benchmark was parameterized according to Table 5.3. This workload is radi-
cally different from both the Red-Black Tree’s and Intruder’s. Overall, transactions are of
moderate length (with regard to the number of operations) and there is little contention.
Unlike the previous benchmarks, in Genome data is partitioned among threads. Threads
execute a sequence of steps in synchrony, i.e., threads must wait for each other when ad-
vancing from step a to step b. Thus, the benchmark exploits intra-step concurrency, but
it is ultimately bounded by the synchronization when advancing from step to step.
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Figure 5.6: Execution time on the Genome benchmark.

Table 5.4: Parameterization of the Vacation benchmark.

Operated items (-n) Accessible records (-q) User transactions (-u) Records (-r) Sessions (-t)

2 90 98 16 384 4 096

With such workload, specially due to the synchronization between steps, it is ex-
pected that the differences between the GCS become negligible. In fact, that is the ob-
served behaviour in Figure 5.6, which depicts the execution time of the Genome bench-
mark using each GCS and varying the number of replicas. As expected in a low con-
tention environment, the system shows scalability.

5.4.3 Vacation

The Vacation benchmark emulates a travel reservation system.

This application implements an online transaction processing system. The system is
implemented as a set of trees that keep track of customers and their reservations for var-
ious travel items. During the execution of the workload, several client threads perform
a number of sessions that interact with the travel system’s database. In particular, there
are three distinct types of sessions: reservations, cancellations, and updates [MCKO08].

Each of these client sessions is enclosed in a coarse-grain transaction to ensure validity
of the database. Consequently, transactions are of moderate size.

The benchmark was parameterized according to Table 5.4, which is the low contention
configuration presented in [MCKO08]. The database had 16 384 records of each reserva-
tion item, and clients performed 4 096 sessions. Of these sessions, 98% reserved or can-
celled items and the remainder created or destroyed items. Sessions operated on up to 2
items and were performed on 90% of the total records.

This workload is similar to Genome’s considering that each thread has its own work
to perform. Thus, the complete bias of JGroups towards the sequencer should not yield
great performance comparing to Spread, since the sequencer can not “steal” the work
from the remaining replicas. But unlike Genome, the whole thread execution path is
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concurrent – there are no sequential sections or rendezvous among threads. Thus, it is ex-
pected that
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Figure 5.7: Execution time on the Vacation benchmark.

In fact, as can be seen in Figures 5.7b and 5.7c, JGroups’ performance is only slightly
better than Spread’s. Appia, in Figure 5.7a, achieves the best performance of the three
GCS due to its intermediate nature with respect to JGroups and Spread. While Appia is
not as unfair as JGroups, replicas do not experience the higher latency, on average, that
the privilege-based protocol implemented by Spread imposes to ensure fairness.

5.5 Summary

In this Chapter we presented the results of an experimental evaluation of the implemen-
tation of a replicated STM described in § 4.4.

In § 5.2 we stated the settings under which our experiments were executed, and pro-
vided an in-depth analysis of the three different GCS used: Appia, JGroups and Spread.
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The Red-Black Tree microbenchmark results are presented in § 5.3. We show that our
replicated STM shows great scalability in this benchmark, until the GCS is maxed out.
The workload in this microbenchmark is characterised by fast transactions, the majority
of which are read-only (this is the only executed benchmark with read-only transactions)
and thus do not require remote communication. The contention is low.

In § 5.4 we evaluate our system under more complex workloads from the STAMP
suite, specifically Intruder, Genome and Vacation. Intruder is a highly contented work-
load with fast transactions. These characteristics are adverse to the optimistic nature of
the transaction certification procedure, as confirmed by the observed abort rate.

In Genome, transactions are more consuming than in Intruder, and contention is low.
But the program is composed of a sequence of steps that must be executed sequentially,
i.e., the steps themselves benefit from multiple threads, but threads must wait for each
other when advancing to the next step. Under these circumstances the differences of the
three GCS become negligible due to the synchronization between steps, as observed in
the experimental results.

The Vacation benchmark, like Genome, features more lengthy transactions with low
contention, but each thread’s execution path is concurrent – threads do not wait for each
other in order to complete their work.

All things considered, we believe that the presented results highlight our success in
building an efficient, flexible, DSTM framework that provides a much more familiar pro-
gramming model than the existing alternatives.

69



5. EVALUATION 5.5. Summary

70



6
Conclusion

6.1 Concluding Remarks

Software Transactional Memory (STM) systems have become a powerful mechanism to
develop concurrent programs, by preventing the programmer from dealing explicitly
with concurrency control mechanisms. STM algorithms associate metadata with the
memory locations accessed during a transaction’s lifetime, and this metadata may be
stored in-place, near the associated memory location, or externally, on a map which pairs
memory cells with metadata. The implementation techniques for these two approaches
are very different and each STM framework is usually biased towards one of them, only
allowing the efficient implementation of STM algorithms following that approach, hence
inhibiting the fair comparison with STM algorithms falling into the other.

TribuSTM is a Java STM framework which allows to implement STM algorithms us-
ing both approaches, thus enabling a fair comparison between the algorithms while, at
the same time, providing a non-intrusive interface to applications. In this dissertation we
propose a novel, efficient, solution to support arrays under the in-place approach.

Despite initially being studied in the context of chip-level multiprocessing, the bene-
fits of STM over traditional concurrency control methods also make it an attractive model
for distributed concurrency control. However, the existing Distributed STM (DSTM)
frameworks are tied to a specific distributed memory model and provide an intrusive
interface to applications. This dissertation addresses the problem of building a modular
DSTM framework which transparently supports different distributed memory models,
while providing a non-intrusive interface to applications.
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We propose an extension to the TribuSTM framework to support DSTM. This exten-
sion cooperates with TribuSTM using clearly defined APIs, which allows to implement
different distributed memory models and the associated protocols to support distributed
transactions. We also keep the programming model non-intrusive, unlike other DSTM
frameworks. This paves the way for the fair comparison of different DSTM models un-
der the same workloads, e.g., using the same benchmarks with minimal-to-node code
changes required.

Using our proposed, general, framework, we provide an implementation of a repli-
cated STM which used a Certification-based protocol to commit distributed transactions.
We evaluated the replicated STM, with three different Group Communication Systems
(GCS), under different workloads using well-known benchmarks. These GCS provide
the Total Order Broadcast primitive required by the Certification scheme. Our evalua-
tion (1) shows the performance of the replicated STM implemented with our proposed
framework; and (2) provides insightful information on the relevance of the GCS imple-
mentation under different workloads.

In conclusion, the modular DSTM framework presented allowed us to easily imple-
ment an efficient replicated STM, which unlike all other distributed STMs, provides a
non-intrusive interface to the applications.

6.2 Future Work

Interesting directions for future work include:

• Currently, our solution for transactional arrays does not support the creation or
structural modification outside instrumented code. This shortcoming presents a
challenging, technical, problem that can be investigated;

• Implementation of the state-of-the-art algorithms of replicated STM distributed
commit and memory consistency (presented in § 2.3.1) on our replicated STM, and
subsequent evaluation;

• Implementation of a distributed STM, as sketched in § 4.3, and possible comparison
with replicated STM;

• Partial replication is still a challenging topic, one which has been largely unexplored
in the context of distributed STM. This framework can aid in such research;

• Under a distributed STM environment, support data and thread/transaction mi-
gration considering the affinity between data items and threads/transactions;

• Applying the distributed STM model to cloud environments.
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