
João Eduardo Luís

Licenciado em Engenharia Informática

TxBtrfs — A Transactional Snapshot-based File

System

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador: Prof. Doutor João Manuel dos Santos Lourenço, Prof.

Auxiliar, Universidade Nova de Lisboa

Júri:

Presidente: Prof. Doutor Carlos Augusto Isaac Piló Viegas Damásio

Arguentes: Prof. Doutor Manuel Martins Barata

Vogais: Prof. Doutor João Manuel dos Santos Lourenço

Novembro, 2011

ii

iii

TxBtrfs — A Transactional Snapshot-based File System

Copyright c© João Eduardo Luís, Faculdade de Ciências e Tecnologia, Universidade Nova
de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

I love deadlines. I like the whooshing sound they
make as they fly by.

— Douglas Adams

Writing is easy. All you do is stare at a blank
sheet of paper until drops of blood form on your fore-
head.

— Gene Fowler

vi

Acknowledgements

If it wasn’t for a key set of people who provided a great deal of support and insight during
the last year, this dissertation probably would not have been finished in the predicted
timeframe. Among these stands out my supervisor, Prof. João Lourenço, with whom I’ve
been working for the last four years and who always backed me up during my, ever so
often, moments of panic due to some unforeseen situation, even if that meant for him to
become sleep deprived.

I’m also obliged to thank my colleagues, and friends, who day-in, day-out, patiently
nodded while they listened to me cursing the Linux Kernel’s inner-workings, specially
Nuno Galvão Martins who, by many times, also shared my pain regarding this particular
subject; and to João Miguel Silva, who acted as my interim revisor, in the last weeks
before the dissertation’s delivery deadline, with an expediency and precision I can only
admire.

Furthermore, I would like to thank all my dear friends for their kindness in leaving
me alone whenever I had to work, although always supporting me in the background
when things went south. Specially to Zé and Rui Jorge, who always had a pep talk ready
during my down lows, a full-paid dinner is in order.

Lastly, but not (in any sense or form) least, my deepest gratitude to my father and my
mother, who put up with my rather frequent mood-swings, and did it with the utmost
comprehension and support; and to my brother, to whom I cannot thank enough for his
unconditional predisposition to help me whenever some problem haunted me, and who
always tried to help although his field of knowledge largely revolves around rocks.

This work was partially supported by the Centro de Informática e Tecnologias da
Informação (CITI), and by the Fundação para a Ciência e Tecnologia (FCT/MCTES) in
the research projects PTDC/EIA-EIA/108963/2008, PTDC/EIA-EIA/113613/2009 and
Euro-TM COST Action IC1001.

vii

viii

Abstract

Several decades ago, the file system was the container of choice for large bulks of
related information, kept in hundreds of files, and relying on applications specifically
created to handle them. These configurations weren’t scalable and could easily become
difficult to maintain, leading to the development and adoption of Database Management
Systems (DBMS). These systems, capable of efficiently handling vast amounts of data,
allowed heavy concurrency without requiring the programmer to deal with concurrency-
control mechanisms, by encapsulating operations within transactions.

The properties of Transactions rapidly became an object of desire by many, and efforts
to bring them to general-purpose programming environments began. In recent years
there have been breakthroughs in bringing the transactional semantics to memory, using
Software Transactional Memory (STM), providing abstractions to concurrency-control on
the application-level. However, STM failed to meet some expectations, specially regard-
ing I/O operations, forcing the abstraction to go deeper in the system: directly to the file
system.

In this document we shall discuss file systems in general, their properties and com-
mon structure, although focusing in those with transactional or versioning capabilities.
Later on, we will present our proposed enhancement of an existing Linux file system
(Btrfs), in order to offer transactional semantics to applications, while detecting potential
conflicts between concurrent flows of execution and reconciling their changes whenever
possible.

Keywords: File Systems, Transactional Semantics, Snapshots, Linux, Btrfs

ix

x

Resumo

Há várias décadas o sistema de ficheiros era responsável por guardar grandes quanti-
dades de informação relacionada, armazenada em centenas de ficheiros, e dependente de
aplicações especificamente criadas para as manter. Estas configurações não eram escalá-
veis e complicadas de manter, levando à criação dos Sistemas de Bases de Dados. Estes,
capazes de lidar eficientemente com grandes quantidades de dados, permitiam elevados
níveis de concorrência sem que o programador recorresse a mecanismos de controlo de
concorrência, encapsulando operações em Transacções.

As propriedades das Transacções rapidamente se tornaram um objecto de desejo,
dando-se inicio a esforços para as trazer para os comuns ambientes de programação.
Têm existido avanços na demanda por trazer a semântica transaccional para a memó-
ria, usando Memória Transaccional por Software (STM), e oferecendo abstracções quanto ao
controlo da concorrência ao nível da aplicação. Contudo, as STMs não corresponderam a
todas as expectativas, especialmente quanto às operações de I/O, levando as abstracções
a descerem de nível e directamente para o sistema de ficheiros.

Neste documento discutiremos Sistemas de Ficheiros, as suas estruturas e proprieda-
des, focando-nos naqueles que apresentam capacidades transaccionais ou multi-versão.
Apresentaremos também as nossas propostas quanto à extensão de um Sistema de Fi-
cheiros para Linux (Btrfs), de forma a oferecermos semântica transaccional às aplicações,
detectando potenciais conflictos entre fluxos de execução concorrentes, e reconciliando
as suas alterações sempre que possível.

Palavras-chave: Sistemas de Ficheiros, Semântica Transaccional, Snapshots, Linux, Btrfs

xi

xii

Contents

1 Introduction 1
1.1 The File System . 1
1.2 Objectives . 2
1.3 Why Btrfs . 3
1.4 Contributions of this Dissertation . 3
1.5 Publications . 4
1.6 Document Organization . 4

2 The File System 5
2.1 Basic Concepts . 5

2.1.1 Files . 5
2.1.2 Directories . 6
2.1.3 Operations over Files and Directories 7

2.2 File System Structure . 7
2.2.1 Virtual File System . 9
2.2.2 Data Allocation Methods . 11
2.2.3 Consistency Guarantees . 13

2.3 Historical Overview . 16
2.3.1 1960’s – 1990’s . 17
2.3.2 1990’s – 2000’s . 17
2.3.3 2000’s – present . 17
2.3.4 Summary . 18

2.4 Transactional Semantics . 19
2.4.1 Transactions . 20
2.4.2 Bringing Transactional Semantics to the File System 22

3 Btrfs — A New Generation File System for Linux 25
3.1 Introduction . 25
3.2 Introduction to Btrfs . 25

xiii

xiv CONTENTS

3.3 Btrfs’s Trees . 26
3.3.1 Roots Tree . 27
3.3.2 Extents Tree . 28
3.3.3 File System Tree . 28
3.3.4 Subvolumes and Snapshots . 30

3.4 Summary . 31

4 TxBtrfs — A Transactional File System Based on Btrfs 33
4.1 Introduction . 33
4.2 TxBtrfs in a Nutshell . 34

4.2.1 Starting a Transaction . 34
4.2.2 Committing a Transaction . 35

4.3 Processes & Transactions . 36
4.3.1 Mapping Processes onto Snapshots 37

4.4 Transaction Hierarchy . 38
4.5 Transaction Validation/Conflict Detection 40

4.5.1 Operation Deltas . 42
4.5.2 Initial Validation/Conflict Detection Process 42
4.5.3 Symbolic Log Replay . 44
4.5.4 Replaying ∆M . 46
4.5.5 Replaying ∆S . 50

4.6 Reconciliation & Commit . 55
4.6.1 Providing ACID . 56

5 Evaluation 59
5.1 Introduction . 59
5.2 POSIX Compliance . 59
5.3 Implementation Evaluation . 60

5.3.1 Throughput . 60
5.3.2 Conflict Detection and Reconciliation 63

5.4 Transactional Semantics Correctness . 63

6 Conclusion 67
6.1 Summary . 67
6.2 Future Work . 68

List of Figures

2.1 Example of a file system directory hierarchy with mounted file systems. . 6
2.2 The Virtual File System and Operation Delegation 9
2.3 Copy-On-Write on Btrfs. 15
2.4 A Transaction’s State Diagram (taken from [SKS06]) 20

3.1 Depiction of a Tree leaf . 26
3.2 Roots Tree directory-like behavior . 27
3.3 Contents of the File System Tree . 29
3.4 Depiction on how Btrfs’ Snapshots and Subvolumes work. 30

4.1 fork(2) issued in different contexts . 39
4.2 Different scopes for inner-transactions . 40
4.3 Erroneous transactional access by P2 . 41
4.4 Mapping ∆M onto Symbolic Log Replay’s sets 46
4.5 Reconciliation & Commit Process . 55

5.1 TxBtrfs’s Throughput for Read operations 61
5.2 TxBtrfs’s relative performance to Btrfs’s, for Read operations 61
5.3 TxBtrfs’s Throughput for Write operations 62
5.4 TxBtrfs’s relative performance to Btrfs’s, for Write operations 62
5.5 Reconciliation Time (ms) Per Operation . 64

xv

xvi LIST OF FIGURES

List of Tables

2.1 Comparison of different file systems’ properties. 19

3.1 Btrfs’s Trees and their purpose . 27

4.1 Sets used during the Symbolic Log Replay 45
4.2 Decomposition of operations that modify the FS. 45
4.3 Conflict Detection when ∆S operations are validated against ∆M ’s 51

xvii

xviii LIST OF TABLES

List of Algorithms

1 Symbolic Log Replay algorithm’s first step: ∆M Replaying 47
2 Method Create M (∆M Replay) . 48
3 Method Link M (∆M Replay) . 49
4 Method Unlink M (∆M Replay) . 49
5 Method Write M (∆M Replay) . 50
6 Symbolic Log Replay algorithm’s second step: ∆S Replaying 51
7 Method Create S (∆S Replay) . 52
8 Method Unlink S (∆S Replay) . 52
9 Method Link S (∆S Replay) . 53
10 Method ReadDir S (∆S Replay) . 54
11 Method Read S (∆S Replay) . 54
12 Method Write S (∆S Replay) . 54
13 Method Truncate S (∆S Replay) . 55

xix

xx LIST OF ALGORITHMS

1
Introduction

1.1 The File System

From a user’s perspective, the File System is the most visible system component, al-
though the user may not realize its importance. The File System abstracts data storage
and provides a logical view, organized in an intuitive way, and is responsible for en-
suring correct data manipulation. As the user sees it, the File System is nothing but an
aggregation of files and directories. Actually, that’s pretty much what the user expects
it to be, and the concept of File System is taken literally: it’s a system to organize files
into directories and subdirectories. In reality, there are some file systems that don’t even
support directories (usually called Flat File Systems), but they still keep files. The original
Apple’s Macintosh computer (Macintosh 128K), introduced in 1984 by its legendary Su-
per Bowl commercial “1984”, actually came with a Flat File System: the Macintosh File
System. And people loved it. Nowadays, Flat File Systems are rare, as they’ve been su-
perseded by the Hierarchical File System model, which is the most common file system
model, aside from occasional purpose-specific devices that may not need the additional
complexities introduced by a more complex file system.

Presenting a couple of files to the user, although it may seem pretty straightforward, is
no easy task. There are forces at work behind that curtain that is the File System. The in-
tensity of those forces have been increasing in the last decades, with the advent of modern
computing and the increasing capacity of storage devices. The cost per MiB in magnetic
storage devices has dropped remarkably in the last 15 years, as a 1 TiB storage device in
2010 is an order of magnitude cheaper than 1 GiB back in 1995 [Res, Iva]. The increasing
capacity of storage devices, along with an increased access to data (for instance, the inter-
net), cries for file systems able to meet current requirements, and earlier file systems just

1

1. INTRODUCTION 1.2. Objectives

couldn’t handle the task. For instance, take Microsoft’s FAT32 [Mica], introduced in Win-
dows 95. Although it was a raging improvement on their previous file system (FAT16),
it still suffered from severe limitations: files could be, maximum, 4 GiB in size, and the
file system would be highly vulnerable to external fragmentation (which would decrease
the file system’s performance). Nowadays, we require more than 4 GiB to store a single
DVD image, and with increased demanding on high-performance systems, file systems
like FAT32 just don’t meet the needs anymore.

1.2 Objectives

Concurrency is essential to most applications, and the implementation of concurrency
control mechanisms is prone to simple mistakes that may cause a great deal of dam-
age. Inspired by databases, mechanisms providing concurrent access to data without re-
quiring the programmer to implement complex mechanisms have been surfacing. These
mechanisms, called Software Transactional Memory (STM) and discussed later in Section 2.4.2,
are usually distributed as libraries which applications may use. Programmers may then
be able to enclose memory-related operations in transactions, disregarding concurrency
control and focus on developing their applications. However, I/O operations in STM are
still discouraged because they usually don’t have transactional semantics. For instance,
if one writes data to a file inside a transaction and then the transaction aborts, the data
may very well stay written. Even if the STM implementation deals with such cases and
compensates the operation, another process may have already read the contents of the
file, which may lead to incorrect behavior. It becomes essential to support transactional
I/O operations, in order to guarantee that file system updates inside a transaction are
still run isolated from the remaining system until the transaction finishes.

Furthermore, when modifying the file system within a transaction, it becomes imper-
ative to guarantee the file system is kept consistent from the application’s point-of-view.
For instance, an application that keeps its state in volatile memory cannot expect to re-
cover it if the system crashes, since everything will be lost on power down. On the other
hand, if the application keeps its state in stable storage, and the system fails during the
time this state is being saved into one or more files, then the application’s state may have
been corrupted and impossible to retrieve as expected. This kind of consistency is not
trivially obtained, and applications often resort to ad-hoc solutions, such as using tem-
porary files, and later invoking rename(2) to replace files, albeit one at a time and still
leaving room for failure. However, wrapping all the operations on a transaction working
on the file system level, could provide such guarantees as the successful execution of all
the transaction’s operations, or none at all.

With providing transactional semantics to user-level applications in mind, we created
TxBtrfs, an extension to a vanilla Btrfs file system supporting transactions, which allows
applications to take advantage of the file system’s transactional semantic on an opt-in
basis.

2

1. INTRODUCTION 1.3. Why Btrfs

1.3 Why Btrfs

Btrfs is one of many responses to the need of better file systems, adequate to modern
contexts with high volumes of data while still maintaining good performance. This file
system is still under heavy development, in constant change, and has a very active com-
munity around it. Where some would find reasons not to use it, we believe using an
yet-unfinished file system may help us to introduce some new features into the field,
while still taking advantage of an interested community eager to provide assistance and
input.

We pondered on using a more stable and reliable file system, such as ext3, but we
constantly met with additional features we had to develop in order to support our work.
Btrfs, on the hand, already supports explicit snapshot creation, which eases our devel-
opment by leveraging existing file system properties. However, Btrfs is not the only
high-performance file system supporting snapshotting, as we will see further in this doc-
ument (Section 2.2.3). Sun Microsystems’ ZFS also provides snapshot capabilities, but its
source code is a tenfold more vast than Btrfs’.

All things considered, we believe Btrfs is the right starting base for our work, and we
are confident that by using such a high-profile file system will lead to more awareness on
the potential of employing transactional semantics on the file system.

1.4 Contributions of this Dissertation

Following what has been discussed in this chapter, we propose a file system providing
transactional semantics using a full-fledged Linux file system at its core, being the main
contributions of this work:

• Transactional guarantees for operations over the file system’s structure (such as
create(2), mkdir(2), unlink(2), among others);

• Transactional guarantees for file operations (such as read(2) and write(2));

• A replica-based approach in order to guarantee isolation to transactions;

• An algorithm with the purpose of detecting conflicts between replicas; and

• An algorithm for replica reconciliation providing file system consistency, from the
application’s point-of-view.

• Adaptation of the Store Benchmark [SLL11, Pes11] in order to validate a transactional
file system.

• Evaluation of the correctness and performance of an implementation of the pro-
posed file system.

Furthermore, our implementation’s prototype should become available to the com-
munity as open source.

3

1. INTRODUCTION 1.5. Publications

1.5 Publications

A preliminary version of this work has been published in INFORUM 2011, 3.o Simpósio
de Informática [LLL11].

1.6 Document Organization

Chapter 2 gives an overview on file systems and where does the interest in transactional
semantics comes from. In detail, we explore several essential file system concepts, dis-
cussing the relationship between the operating system and the file system, as well as
common data allocation schemes and consistency guarantees, while providing an his-
torical overview of file systems since the 1960’s. Later on, we introduce transactional
semantics, some concepts, and why these are relevant in a file system context.

Chapter 3 will explore relevant details about Btrfs, namely its organization and capa-
bilities taken advantage by TxBtrfs.

Our work towards a transactional file system based on Btrfs will be presented in
Chapter 4, in which we will first briefly describe TxBtrfs, followed by a discussion on the
relation between processes and transactions, as well as the relationship between transac-
tions. We will also present our conflict detection scheme, and we will describe how we
reconcile the file system in order to obtain a consistent state.

Finally, in Chapter 5 we will present the results of our evaluation, and in Chapter 6
we will provide a summary of this dissertation and present future work to be done on
TxBtrfs.

4

2
The File System

2.1 Basic Concepts

When one speaks of a file system, one thinks of files and directories. Although they
may be rebranded from system to system, whether there is a simple Command Line
Interface or a full-fledged Graphical User Interface, these are transversal concepts to any
file system. One also expects to be able to interact with both files and directories by using
some supported operations. These operations may either be specific to the file system
itself, or may be defined according to a standardized interface. In the following sections
we will detail both file and directory concepts, and we will also discuss operations on
different operating systems.

2.1.1 Files

The file system enhances the user-experience by abstracting the physically stored data
into Files. These may be seen as the essential logical unit of a file system, and is perceived
by the user as the only way to keep data in a storage device. Any data written in a file
is, generally, directly mapped on a persistent (non-volatile) physical device by the file
system, such as flash or magnetic drives. However, there are such file systems, such as
tmpfs, that are considered volatile or temporary. These are not mapped onto stable storage
devices, but instead onto volatile memory (RAM, for instance). As a consequence, any
files created by the user in such a file system will be lost once the system either halts or
reboots.

A file can contain anything. The information a file contains is defined by its creator, or
by whoever accesses and changes the file. There is no reason why someone accessing a

5

2. THE FILE SYSTEM 2.1. Basic Concepts

file wouldn’t be able to write something in binary format, even if the file’s creator initially
wrote plain ASCII. Of course, if the file was initially intended as a text document, in plain
ASCII, and posteriorly some binary data was written to it, then it is possible that reading
the file becomes a bit difficult. This is why, usually, files have their very specific purpose:
text, graphic images, video, executable programs, etc.

What kind of information is contained by the file roughly is of any concern to the
file system, but it is of use to the user. Traditionally, a filename is composed by two dis-
tinct parts: the file’s name (or basename) and an extension, divided by a period character.
The extension in the filename is usually associated with the file’s type; for instance, foo.txt
would be a file named foo, which would be a text file. Some operating systems do impose
some restrictions based on file types, for both the user’s and the system’s sake, associ-
ating extensions with expected behavior or applications. Microsoft’s MS-DOS and early
Windows Operating Systems actively enforced the basename.ext filename format; for in-
stance, executable files would have to be assigned an extension that would allow them to
actually be executed (e.g., exe or com). On the other hand, on Unix-like operating systems,
although allowed, extensions are not mandatory and are simply taken as aids to the user
(and applications) determining a file’s contents. Inferring a file’s type on such a system is
made using a magic number stored at the beginning of some files (e.g., executables, shell
scripts, PostScript files, etc). However, not all files have magic numbers, and it becomes
both the users and the application’s responsibility to infer the file’s type.

2.1.2 Directories

/
bin
etc
home

usr
tmp
var

mnt
cdrom

bob
alice

Figure 2.1: Example of a file
system directory hierarchy with
mounted file systems.

Aside from Flat File Systems we previously mentioned
in Section 1.1, file systems support organizing files by
means of Directories. These are merely logical units,
as they don’t keep any data, as files do. Directories
are, in a way, analogous to a folder, containing related
files (even if this is not mandatory). However, in a file
system, these folders may also contain other folders
(subdirectories), and so on1. Each file or subdirectory
within a directory is considered a directory entry. In
UNIX, directories may be taken as files themselves.
However, instead of keeping data as files do, direc-
tories keep directory entries (dentries). Later, in Sec-
tion 2.2.1 we will discuss this behavior with more de-
tail.

It is not uncommon, however, to use directories for
more than simply organizing files. In a way, a file system may contain other file systems.

1Although, some file systems may impose restrictions on the number of possible subdirectories. Linux’s
Third Extended File System, for instance, only allows a maximum of 32 thousand subdirectories within any
directory.

6

2. THE FILE SYSTEM 2.2. File System Structure

In Unix-like operating systems, it is frequent to have one or more file systems mounted
in directories within the base file system. In Figure 2.1 we depict such a scenario, where
we have the base file system, /, and within which we may have mounted three additional
file systems: one in /home, over NFS [WLS+85], containing the system’s users’ home di-
rectories; another in /mnt/cdrom, which may be a ISO-9660 file system; and, in /tmp, we
may have mounted a RAM-based tmpfs such as the one described back in Section 2.1.1.

2.1.3 Operations over Files and Directories

Operating systems provide system calls to interact with the file system, allowing (at least)
to create, write, read, delete and truncate a file. These are the most basic operations
required in a file system, although other primitives may be required, or simply exist to
facilitate files and directories manipulation — for instance, providing a system call to
open a file in either read, write or append mode is common in operating systems.

With the purpose of standardizing the operating system’s Application Programming
Interface (API), including the file system’s API, the Institute of Electrical and Electronics
Engineers (IEEE) created the POSIX standards family. In fact, the POSIX (Portable Op-
erating System Interface for Unix) was meant to standardize the APIs among Unix-like
operating systems, but it can (and has been) applied to other operating systems as well.

The POSIX.1 standard (IEEE Std 1003.1) [Lew91] defines the API for file and directory
manipulation in a POSIX-compliant file system, and this standard currently is either fully
or partially supported by most Unix-like operating systems, including Linux, FreeBSD,
Mac OS X or Solaris. Some non-Unix-like operating systems also support POSIX, al-
though they may not support it natively; such is the case of Microsoft’s Windows oper-
ating system, which supports a fully-compliant POSIX interface through Interix [Int], a
subsystem part of the Windows Services for Unix (recently, Subsystem for Unix-based Appli-
cations) software package. Unlike a POSIX-compliant Unix-like operating system, in an
operating system such as Windows, POSIX support is provided in user mode, running
atop-the-kernel instead of in-the-kernel.

As our work relies on Btrfs, a Linux File System, we shall not digress and, in this
document, we shall focus solely on POSIX-compliant APIs.

2.2 File System Structure

As it has been established by now, a file system is responsible for providing an interface
to manipulate files and directories. However, we haven’t yet explained how a file system
actually works. The file system is very complex, creating the bridge between the user’s
logical view of data and the storage medium where this data is kept. From the moment
a computer is booted, up to the moment it is halted, the file system will be performing
write and read operations on and from the physical device it lives on. If the file system
fails to perform these tasks graciously data may be lost. If the file system takes too long

7

2. THE FILE SYSTEM 2.2. File System Structure

to perform these operations performance may be affected. If the file system does not fit
the task at hand, or if it is incapable of scaling to the needs of the system, then it may
waste too much time reading and writing, definitely affecting performance.

Roughly speaking, implementing a file system is always associated with two main
design issues: how the user should logically perceive the file system — files, directories,
attributes, allowed operations —, and how to map the logical file system onto a phys-
ical device, creating the appropriate data structures and algorithms. Structurally, a file
system may be decomposed in three essential components: the basic I/O interface, an
organizational component, and the logical file system.

The first one is responsible for the interaction with the physical devices, and will be
used to issue write and read requests on and from the device. In reality, the file system
doesn’t access directly the storage device to read or write data; that responsibility is dele-
gated to a device driver. What the file system actually does is simply ordering the device
driver to retrieve, for instance, a given block from disk. A block is a one or more disk
sectors, and these last ones can be of various sizes, depending on the storage device itself,
but 512 bytes is recognized as the de facto standard for magnetic disks — although optical
disks use sectors with 2048 bytes and newer magnetic disks use sectors with 4096 bytes
to improve efficiency. Within the file system, both the basic I/O interface and the orga-
nization component will be co-dependent, as the last one will be the one responsible for
mapping logical file system blocks to physical disk blocks. Last, but not least, we have
the logical file system, which actually relies on both the previous components to man-
age the file system’s, and files’ metadata. We consider metadata all of the file system’s
structures and informations, except for the actual file’s data — directories, as well as file’s
attributes, are metadata kept by the file system —, and these informations may be both
kept in the device as well as in primary memory, therefore the dependency of the logical
file system on the other two components.

In early operating systems, all these components would be embedded in the file sys-
tem itself. However, when an operating system supports more than one single file sys-
tem, integrating them into a single logical file system view and allowing the user to seam-
lessly access each and every one of them, a more sophisticated approach must be taken to
guarantee everything works as expected and without increasing the system’s complexity
or incurring into performance degradation.

To address this issue, modern operating systems offer two additional layers: a low-
level layer for file systems to access device drivers, possibly providing caching mecha-
nisms to avoid performance degradation; and a higher-level layer that abstracts the user
from the actual file systems being accessed, providing a single API. This last layer is
called the Virtual File System (VFS), and has been present in operating systems for more
than two decades. Sun Microsystems’ SunOS 2.0 (1985) had one of the first VFS imple-
mentations [MMS00], allowing to transparently access both UFS and NFS file systems.
We will discuss the Virtual File System in Section 2.2.1, although solely focusing on the
Linux’s VFS as that’s what’s relevant to our work, and in the following Sections we will

8

2. THE FILE SYSTEM 2.2. File System Structure

be discussing common approaches to allocate data and guaranteeing file system consis-
tency.

2.2.1 Virtual File System

The Virtual File System, as seen in Figure 2.2a, is a layer between the system calls and the
implementations of any number of file systems the OS may support. Being positioned
on that level, the VFS is in perfect conditions to receive the operations issued on the
system call layer and delegate them to the appropriate file system (Figure 2.2b depicts
this behavior).

User Applications

glibc

System Calls

Virtual File System

Individual File Systems
ext3 Reiserfs

tmpfs Btrfs
...

Device Driver Stack

U
se

r L
ev

el
Ke

rn
el

 L
ev

el

NFS

(a) The Virtual File System in the
System Stack

libc
write()

ext3_write()

Application

sys_write()
syscall

vfs_write()
VFS

ext3

(b) Operation Delegation

Figure 2.2: The Virtual File System and Operation Delegation

With this structure, it is then possible for the VFS to offer a clean and generic inter-
face to the system, despite how each file system is implemented. As long as each file
system models their operations according to what the VFS is expecting, it is possible for
multiple implementations to coexist and to be transparently accessible from anywhere in
the system. From the VFS perspective all file systems look the same, and only the file
system itself knows the implementation details. This abstraction is the reason why one
given program is able to properly execute using either a local or a network file system.
If additional file systems are added to the operating system, programs that may access
them will not need to be rewritten.

We have previously discussed that file systems keep both data and metadata, but we
did not discuss how these are kept. In a way, if we only had a limited amount of file
systems supported by the operating system, both data and metadata could be kept in
any form, as long as the operating system and the file system were able to understand
the data structures involved. However, once we have a scheme like the VFS, it becomes
imperative to standardize the data structures describing any informations the file system

9

2. THE FILE SYSTEM 2.2. File System Structure

may require. Basically, the VFS needs the file systems to provide files’ and directories’
metadata in data structures known to both — the inode; for data, however, there is no
need, as it is accessed only during reads and writes, and those operations are directly
delegated to the underlying file system by the VFS.

Inodes are logical aggregates of informations regarding files. From the VFS perspec-
tive, each inode will uniquely represent a file in a file system, along with standard in-
formations expected by the operating system — in UNIX, these include the file’s mode,
access and modification times, and both user and group ids, for instance. In Linux, a VFS
inode may also reference file system-specific informations, but that is the file system’s
choice and responsibility to maintain. Furthermore, and following UNIX’s philosophy
that “On a UNIX system, everything is a file; if something is not a file, it is a process” [Mac07],
much of what composes the operating system may be represented by inodes — e.g., direc-
tories, block devices (any device supporting random access and seeking, such as physical
disks or memory regions) or character devices (usually used for stream communications,
as seen in sockets, virtual terminals or peripherals as keyboards and mice).

Accessing files is not a straightforward process. File system operations often rely on
path names, which means the system must first translate each component of a path into
each inode, before being able to access the desired inode’s informations. The VFS will
take each component of a path and will create, on-the-fly, an in-memory data structure
called directory entry (dentry). Each dentry will associate a name with an inode, a parent
dentry and a list of child dentries. Traversing a path will then be summed to obtaining
the first dentry, and follow every path component until reaching the last dentry. Basi-
cally, by accessing /home/user/foo.txt, the VFS will create four dentries (i.e., /, home, user
and foo.txt). As path lookup can be a time consuming process, in order to facilitate path
based operations, the VFS keeps a cache of dentry objects. The cache is then consulted
during path name translation, which may improve overall performance because reading
an inode from an in-memory cache is faster than looking it up on-disk.

One must not finish this topic without discussing two very important subjects: how
does the VFS knows which file system is mounted in a given directory, and how to deal
with it. Fortunately, these are both answered with one single concept: the Super Block.

In a file system, the Super Block may be seen as the point-of-entry into the file system
itself. It is kept in a predefined location within a volume, guaranteeing the file system’s
driver knows where to look for it once the VFS instructs it to, and it contains essential
informations to use the file system as a whole. For instance, in the Second Extended File
System (ext2), the Super Block is kept 1024 bytes from the volume’s beginning; in Btrfs,
however, it is kept 64 KB from the volume’s beginning. The on-disk Super Block will
provide the file system’s driver with the essential informations about the file system’s
configuration (e.g., in Btrfs, sector size, node and leaf sizes) and the whereabouts of the
file system’s on-disk data structures (e.g., free blocks, inode’s tables or system trees).

After being loaded by the file system’s driver into memory during the mount process,
the file system will be let known to the VFS. Although each file system may keep its Super

10

2. THE FILE SYSTEM 2.2. File System Structure

Block in a dedicated data structure, fitting its private needs, it will also register a generic
Super Block data structure with the VFS. This data structure will contain non-file-system-
specific informations required by the VFS to properly interact with the file system: which
are the file system-specific methods to be called for each VFS operation, where is the file
system mounted, the file system type, name and mount options, as well as a file system-
specific data structure, much like what happens with the inode data structure. From
this moment on, the system is totally capable of transparently issuing operations on the
available, mounted file systems.

2.2.2 Data Allocation Methods

From a user’s perspective, when we have a file system on a storage device we want to
handle its data as fast as possible, but we don’t want any storage space waste — in other
words, we want time and space efficiency. Aside from device-specific characteristics such
as magnetic disks’ rotations-per-minute, data transfer rates and on-device data caches, of
which we do not speak on this work, most of a file system’s efficiency is obtained from
careful and smart on-disk data handling.

Earlier file systems suffered from fragmentation and poor data handling, leading to
severe performance degradation due to both waste of storage space and inefficient raw
disk bandwidth usage. For instance, the first UNIX file system, initially called simply
the FS but nowadays commonly known as System V FS (circa 1974), could only take full
advantage of approximately 5% of raw disk bandwidth. Since then, file systems evolved
and, as their internal data structures were adapted to different workloads and different
amounts of data, became more powerful.

The biggest challenge in defining a suitable on-disk data structure refers to how the
data and metadata are going to be allocated on the storage device. Several methods
have been employed throughout the decades, and some are best suited to some tasks
than others. We shall discuss those we consider the most relevant allocation methods
up until now, contextualizing their uses and the performance impacts the file systems
implementing them suffered.

From a performance perspective, the theoretically optimal allocation method would
be Contiguous Allocation [MvRT+90], guaranteeing that each file occupies a contiguous
set of on-disk blocks, requiring the minimal amount of seeks, which may severely impact
performance on magnetic disks. However, this allocation method translates into external
fragmentation of the file system, due the free space being broken into pieces, as files are
created and deleted. Although Contiguous Allocation is optimal to read operations, this
allocation method may become troublesome to write and to expand a file, because one
must find enough contiguous free space to write the file. However, one should account
for the eventual need to expand the file, unless one is willing to reallocate the file in the
future if needed. Even then, upon reallocation, one may be unable to find any contiguous
free space big enough to store the file, even if there is a lot of free space on disk. Ideally,

11

2. THE FILE SYSTEM 2.2. File System Structure

this type of data allocation is good for file systems with small, mainly immutable files.
The only way around the external fragmentation problem imposed by this method al-
location would be to defragment the disk, by compacting the files. Basically, one could
reallocate every file, guaranteeing they would be as contiguous on-disk as possible, leav-
ing all the free space either in the beginning or the end of the storage device.

Linked Allocation solves the problems raised by Contiguous Allocation, by considering
a file nothing more than a list of allocated block segments. In this allocation method, one
may think of the file as a singly-linked list: the file’s first block segment is the head of
the list, keeping a pointer to the next block segment if any, and so forth. This method
avoids the file system’s external fragmentation, as well as the issues with expanding the
a file when there are no free contiguous blocks available. However, it does introduce
a problem the first method avoided completely: Linked Allocation may introduce any
number of seeks while reading a file, as the file may be scattered throughout the disk.
Eventually, with the increased file creation and deletion, this problems tends to become a
severe cause for performance degradation. This is a common issue with FAT file systems
(FAT12, FAT16 and FAT32), and it may be fixed by defragmenting the disk, much like
what was previously discussed for Contiguous Allocation. A simple approach to reduce
the impact of this problem, avoiding the necessity of disk fragmentation, is to allocate
clusters of blocks. Upon each allocation, instead of using the block as a unit, the file system
allocates and reserves a cluster, which may be (for instance) composed by four blocks.
This allows the file system to expand a file in the future, if any space is still left in the
cluster, and the use of clusters also enforce higher locality of the file’s on-disk data, thus
avoiding further seeks.

Block clustering, though, introduces yet another problem: internal fragmentation. In
fact, internal fragmentation was already present in both the discussed models, but then it
was far less relevant. Using the block as the allocation unit, even if the file didn’t occupy
the whole block, the wasted space would be minimal. However, using block clusters
may lead to an allocation of several blocks, of which the file only uses a small portion.
In this case, internal fragmentation is much more severe, as it wastes much more stor-
age space. A technique used to avoid the impact of internal fragmentation on a storage
device is the implementation of Block Suballocation (also known as Tail-Packing), which
consists in aggregating the tail (i.e., the last blocks) of multiple files into one single block,
reducing the wasted space. Efficient heuristics may be employed, in order to guarantee
that the blocks containing tails from multiple files are kept closely enough to the remain-
ing blocks, avoiding further disk seeks to retrieve them. This technique is employed by
several file systems in used, such as Btrfs and ReiserFS [Rob].

The simplicity of Linked Allocation fails to perform efficiently when direct access is
required, since the pointers to the blocks are scattered throughout the disk and there is
no direct way to retrieve them without accessing all the blocks, starting on the head. One
solution to this problem is by using Indexed Allocation, which literally keeps an index on
all the blocks used by each file. The concept is pretty straightforward: the file system

12

2. THE FILE SYSTEM 2.2. File System Structure

keeps a directory of files, each file associated with an index block; each index block will
then keep an array of disk addresses for each block belonging to a file, each position
corresponding to a block and kept ordered (i.e., position i corresponds to the ith block
of the file). Such simplistic indexation, however, limits the maximum size of the a file
to the number of blocks that may be kept by each index block — using a 4 KB index
block, containing 32-bit addresses, one would be limited to indexing 1024 blocks, which
is equivalent to 4 MB files.

A common solution to increasing the maximum allowed file size is to keep a certain
amount of direct pointers on the index block, which directly address some of the file’s data
blocks (useful for small files), and some indirect pointers, which refer to other index blocks.
However, one should be aware that increasing the level of indirection does not infinitely
increase the file size, as it is always bounded by the amount of bytes addressable by the
architecture and the file system. For instance, with a 32-bit address size and 4 KB blocks,
one will easily run out of addresses after the third indirection level, depending on the
amount of direct pointers each indirection level holds. In any case, this is a common
approach taken by file systems such as the Unix File System or the Second Extended File
System.

Performance-wise, Indexed Allocation still suffers from the scattered blocks problem
as Linked Allocation. Even though the index blocks may be cached in memory, avoiding
seeks to retrieve them, this allocation method does not provide any characteristic to avoid
spreading a file’s blocks all over a volume. This is why file systems such as Btrfs, which
aim at providing a reasonable solution to High-Performance systems, take a different
approach, using trees [Rod08]. In Btrfs’s case, all metadata is kept in trees, including
informations regarding the location of a file’s data. The nature of trees, along with the file
system’s policy, tries to keep all the pointers regarding a single file in the same tree leaf;
if not, they will probably be in contiguous leaves. Each of these pointers will refer to an
Extent, which is a group of contiguous blocks much like the clusters we have discussed
with Linked Allocation. These extents, however, do not have a fixed size, and the file
system may even allocate extents of one single block for a file that does not require more
than that. The main objective of using extents is to guarantee that we actually allocate
as much contiguous space as available, and no more that strictly necessary; if the file
happens to grow, another extent will be allocated, although not necessarily contiguously
to the previous. With this approach, Btrfs aims at reducing disk seeks, while keeping
both external and internal fragmentation to a minimum. The internal fragmentations is
also addressed with the usage of Block Suballocation, as previously discussed.

2.2.3 Consistency Guarantees

So far, we have discussed how file systems are handled by the operating system, and
how the file system handles its data. We haven’t discussed, however, how the file sys-
tem guarantees its own consistency. Machines are prone to failure, either mechanical or

13

2. THE FILE SYSTEM 2.2. File System Structure

due to external factors, such as power outages. Even if we were 100% sure such issues
would not arise, we would still be bound by Murphy’s Law: “If anything can go wrong,
it will” [Roe52]. Therefore, the file system must guarantee that, if anything goes wrong
while performing an operation, it is kept in a consistent state.

A popular approach to avoid inconsistencies in a file system is by using a Journal (ext3,
XFS, ReiserFS), kept on non-volatile storage, such as a magnetic disk, and onto which a
set of changes to the file system (Transaction) issued by any operation are sequentially
appended. Once a transaction is fully written onto the journal it is considered to be
committed. At this moment, no file system data structures have been changed, but they
are safe in storage. If the system happens to crash at this point, no changes have been
totally lost: they may have not been applied to the file system, but it is possible to read
them from the log. Eventually, the file system will replay the log, sequentially applying
the changes and removing them from the journal. In fact, the log is nothing more than a
circular buffer, and what the file system actually does is to update a pointer that reflects
the last applied change. Log replaying after a crash may, however, raise issues when
the system crashed before a transaction has been effectively committed. In such a case,
when the system reaches the end of the log without finding an hint that the transaction
has been committed, then it has to undo all the changes made while replaying the log
— but it still guarantees that, although some information has been lost, the file system is
kept in a consistent state. Journaling file systems usually provide three different types of
journaling, depending on how tight one wishes to keep the consistency guarantees while
considering the associated performance degradation:

Writeback Mode Only the metadata is journaled, while the data blocks are directly
written to disk, without any order preservation. If the system crashes after the metadata
has been journaled but before the data is fully written, unless the metadata has some way
of validating the data (e.g., checksums), the file system can incur in silent data corruption
— which is avoided by using Ordered Mode.

Ordered Mode The same as Writeback Mode, but metadata is only written to the log after
the data has been safely written to disk. This method avoids silent data corruption, but it
may not be able to fully write the metadata onto the log if the system crashes meanwhile.
However, even if such happens, the file system is kept consistent.

Data Mode Both data and metadata are journaled. This guarantees full consistency, but
may have a severe impact on performance, as each change is written twice: once in the
journal, and another into the file system during log replay.

There are other alternatives to guaranteeing file system consistency besides journaling
(soft-updates [MG99], for instance). However, aside from journaling, the technique that
is most relevant to our work is Copy-On-Write, which basically keeps consistency by cre-
ating copies of blocks whenever these are changed. Take a transaction such as the ones

14

2. THE FILE SYSTEM 2.2. File System Structure

used in journaled file systems, but, instead of applying each change onto a log, blocks
aren’t really changed. Instead, each block that is supposed to be changed will, first and
foremost, be copied into a new location on disk and only then will it be changed. This,
by itself, does not guarantee consistency. However, if we are able to guarantee that all
pointers in the file system are atomically updated to reflect the changed blocks once the
transaction commits, we are able to guarantee full file system consistency. One can imag-
ine the difficulty of guaranteeing atomic updates on several on-disk pointers, possibly
scattered throughout the disk, as we would have if we were using an Indexed Allocation
method — however, associating Copy-On-Write with a journaling file system can be a so-
lution, as it was taken by ext3cow [PB05], an implementation of the Third Extended File
System with Copy-On-Write properties.

Copy-On-Write is far more useful if we are dealing with a tree-based file system, such
as WAFL [HLM94], ZFS [BAH+] or Btrfs [Rod08]. All of these file systems employ
Copy-On-Write in order to guarantee full file system consistency. As they are based on
trees, upon changing a block, they create copies of each block pointing to the changed
blocks, and so forth up until the tree’s root. Once the algorithm reaches the root, we
have a shadow of a tree branch, with all the changed blocks. It is easier, then, to atomi-
cally change a single pointer, effectively changing the tree’s root. As the algorithm only
changes the pointers related to the changed blocks, unchanged blocks are never copied
and their pointers are never changed. Basically, creating a shadow branch does not in-
volve copying the whole tree. Once the tree’s root is atomically changed, the file system
may either free the old blocks, or keep them free of charge as state snapshot. Figure 2.3
illustrates how Btrfs handles Copy-On-Write, and should be noted that ZFS’ works very
similarly to what is presented in this figure.

A

B

C D

A'

B'

C' D'

A

B

C D

A'

B'

C' D'

Figure 2.3: Copy-On-Write on Btrfs.

15

2. THE FILE SYSTEM 2.3. Historical Overview

2.3 Historical Overview

Common sense dictates that people make mistakes. In a file system, mistakes can lead
to unexpected results, such as data-losses. Nowadays, operating systems are usually
packed with some kind of tool allowing users to safely delete their files without losing
them by mistake. However, these utilities don’t usually work on the overall file sys-
tem level: on an Apple computer, deleted files using the Graphical User Interface will be
moved to the Trash, but if one issues a rm -fr of a directory, on the terminal, it will be per-
manently deleted. This behavior can turn out to be catastrophic if one has administrator
privileges on a system.

Over all these years, the best that most mainstream operating systems could do to
mitigate these problems was some backup utilities. These may be rather useful for a
user, providing timed and automatic file system snapshots, but any changes made in
between snapshots will still be irreversibly lost. Backup utilities existed in the server world
way before their introduction into the desktop. For instance, rsync [Way] is a differential
backup tool that synchronizes files and directories between two locations, introduced in
the early 90’s and still in common use, and rsnapshot [Nat] is another tool, built on top
of rsync, that provides snapshots instead of full backups. However, these tools lack both
transparency and full-time tracking of changes.

Data loss can be mitigated by backup frequency. However, keeping up-to-date back-
ups for a common user is not an easy task. Regular people simply don’t backup data.
Most believe their computer to be a flawless machine, able to sustain any kind of injury
and completely immune to the world around it, but this is not the case. For the layman
user, backing up data is either a superfluous or tedious process of machine-like behav-
ior: put disk into tray, burn disk, get disk off tray, repeating the process as many times as
needed. Nowadays we start to acknowledge some automatic backup tools in mainstream
operating systems [App, Micb], but even their configuration may become an issue for the
common user — lack of transparency takes its toll. When on a server, however, we must
change the approach: backups are required, imperative; snapshots should be frequent in
order to guarantee minimal losses; and transparency does not take part in the decision
when it comes to the necessity of backing up data, although it may ease up configuration
and maintenance.

Throughout the years, it became clear that the best way to avoid data loss due to
either common mistakes or catastrophic failures, while providing as much transparency
as possible, would be to embed the backup tools into the file system. Currently, there are
several file systems supporting snapshotting and file versioning, in several forms and
shapes, but all of them with one basic idea: guaranteeing minimal to no information loss,
and as much transparency as possible. In the next sections we present the evolution of
file systems, hoping to establish a clear relation between the demands of the World facing
data handling, and the responses regarding file system implementation.

16

2. THE FILE SYSTEM 2.3. Historical Overview

2.3.1 1960’s – 1990’s

The first spoken occurrence of a versioned file system comes with ITS [Wik], an operating
system from MIT dating back to the early 1960’s. Around 1969, the Digital Equipment
Corporation (DEC) developed the TENEX [BBMT72] operating system, later becoming
the TOPS-20, also having an early versioned file system implementation. Accordingly
to the cited paper, in TENEX, “each time a file is written a new version is automatically cre-
ated by making its version number be one greater than the highest existing version”. Although,
it wouldn’t be until the 1980’s that versioned file systems got their spotlight in the aca-
demic community. Circa 1983, the Cedar File System was introduced [GNS88], relying
on NFS to provide access to remote, immutable (read-only) versions of files, which guar-
antees cache consistency between clients at reading time. Cedar keeps versions side-by-
side with the files, using a specific name convention to differentiate among them. This
approach to version-keeping was first seen in ITS, and would still be used in other im-
plementations, following Cedar.

2.3.2 1990’s – 2000’s

In 1992, NetApp (formerly Network Appliance) developed the Write Anywhere File
Layout (WAFL) [HLM94], which provides files to multiple clients while using multiple
file systems. Among WAFL’s capabilities, we are interested in its snapshot capabilities,
backed by Copy-On-Write policies. Basically, WAFL creates snapshots on a near per-write
basis, and keeps previous states of the system using snapshots. As we mentioned be-
fore, in Section 2.2.3, using Copy-On-Write it is possible to create snapshots with low, to
no impact on the system’s performance. In the late 1990’s, the Elephant File System was
introduced to the community [SFH+99], bearing much similarity to Cedar when it comes
to version handling — versioning was managed by the file system, and version numbers
were appended to the filename. By using Copy-On-Write protected blocks, the Elephant
File System is able to keep a log of changes to inodes, while keeping earlier versions.
This allows higher concurrency, while guaranteeing that each application keeps seeing
the same file version it would see if there were no other updates to the inode.

2.3.3 2000’s – present

The last decade brought an increased availability of implementations on this subject: in
2005, Zachary Peterson and Randal Burns proposed the ext3COW file system [PB05],
based on a vanilla ext3 but with additional Copy-On-Write capabilities; also circa 2005,
Sun Microsystems introduced ZFS [BAH+], considered by many the most fantastic file
system ever developed; and circa 2008, the Btrfs [Mai] project was started by Oracle.
These three projects had one thing is common: they provided block protection using
Copy-On-Write policies, therefore allowing costless snapshots. However, ext3COW, at
its time of release, only would create snapshots if explicitly requested by the user. Cur-
rently, this project is dead and, being a purely academical, its creators show no interest

17

2. THE FILE SYSTEM 2.3. Historical Overview

on resuscitating it.

Both ZFS and Btrfs have different objectives than ext3COW. These are full-fledged
file systems, and they aim at being used in High-Performance systems, both allowing
the creation of multi-device spanning file systems, disk pooling, RAID or even support-
ing online file system resize, using file system-specific administration tools. The level of
abstraction created simplifies the administration and the file system’s maintenance. In
reality, Btrfs comes as an alternative to ZFS for Linux-based systems, as until recently
there was no implementation of ZFS in the Linux platform [Ric, Inf].

As stated before, both these file systems provide snapshot capabilities, although tak-
ing different approaches. On ZFS, snapshots are implicit, and a snapshot is created ev-
ery time the tree root is atomically updated. Theoretically, this would happen on every
write, but, to optimize the file system, the tree is only updated after applying batches
of writes. Btrfs follows a similar approach on updating the tree, but does not implic-
itly create snapshots: if the user wants a snapshot, it must explicitly create it — even so,
snapshot creation has barely any cost.

2.3.4 Summary

Table 2.1 presents some of the discussed file systems, some of which we consider to be
the most relevant in our work’s context.

We include both UFS and ext3 as they have been used as the file systems of choice in
several platforms for some time now. The Unix File System (UFS) was developed with
the intent of replacing the then used System V FS in UNIX, which had several issues lead-
ing to bad performance. UFS is still used in many UNIX-based operating systems, such
as Solaris (which is the native operating system of ZFS). The Third Extended File Sys-
tem (ext3) is commonly used in Linux operating systems, still being used as the default
file system by many Linux distributions. The stability provided by these file systems,
and their widespread use, make them a great base of comparison for the remaining file
systems presented in the table.

Although some interest in versioning schemes have been around for a long time, as it
was established before back in this section (§ 2.3.1), only with WAFL, in 1992, we have the
first full-fledged versioned file system beyond the academic circle. From this point on,
several versioned file systems were introduced, and Copy-On-Write became widely used,
in detriment of journaling policies. WAFL, ZFS and Btrfs are, among the presented file
systems, those created for high-performance systems, thus their capabilities on resizing
the file system while being used (Online Resizing), and all the three come with versioning
capabilities. Therefore, we believe it becomes obvious that versioned file systems have
been on their way to adoption on non-academic circles for a while, and may very well
become a de-facto standard (considering what is expected from both ZFS and Btrfs) in
scenarios where both availability and scalability are required.

18

2. THE FILE SYSTEM 2.4. Transactional Semantics

Year File System Versioning Consistency Online
Resizing

Academic

1983 Cedar Yes On-read consistency ? Yes

1984 UFS No Journaling No No

1992 WAFL Snapshots Yes, using COW Yes No

1999 Elephant Yes Yes, using COW ? Yes

2001 ext3 No Journaling No No

2005 ext3COW Snapshots Yes, using COW; also
using Journaling

No Yes

2005 ZFS Snapshots Yes, using COW Yes No

2008 Btrfs Snapshots Yes, using COW Yes No

Table 2.1: Comparison of different file systems’ properties.

2.4 Transactional Semantics

Several decades ago, the file system was the container of choice for rather large bulks
of commercial information. An enterprise that required its customer’s data to be stored,
would store it in one or more files. If they also needed to keep their orders, payments,
or debts, then other files would be created. Managing this amount of information was
delegated to programs, that would access the required files and create, delete or update
whatever data was needed. Such scheme would rapidly become unsustainable nowa-
days, since keeping this kind of information on a general-purpose file system has several
disadvantages:

Data Redundancy and Inconsistency One may have the same information replicated in
different files — e.g., the same address for the same costumer may be stored in
both his orders’ file and his debts’ file —, or different files could hold different
informations related to the same subject — the orders’ file keeps a given phone
number for the customer, while the debts’ file keeps a different number.

Difficult Access Considering that, in these systems, informations are accessed by exist-
ing computer programs, if one wants to interpret the available information in a new
and revolutionary way, one has to write a program to access it. However, as differ-
ent files may be in different formats, one will have to take that into account and the
complexity of accessing the information sky-rockets. It may be possible, but it isn’t
trivial.

Isolation and Concurrent Accesses Unless the correct measures are employed, file sys-
tems allow concurrent accesses to files. A program performing update operations
may, in a first run, read some data in order to update it; however, upon update

19

2. THE FILE SYSTEM 2.4. Transactional Semantics

the previously read data is no longer correct because some other program already
changed it. Insuring that each program executes isolated from the rest of the sys-
tem is not an easy task, and it increases the programming complexity — and overall
propensity for mistakes.

Atomicity We have discussed, in Section 2.2.3 how fallible computer systems are and the
kind of inconsistencies they may create if they crash. When changing crucial data,
such as banking statements for instance, one has to make sure either all the changes
are made or none are, and using general-purpose file systems, accomplishing this
may be quite complex.

This reasons lead to the development of database systems, able to efficiently retrieve
data while easily allowing the creation of relationships between complex data structures.
With the formulation of the Relational Model, proposed in 1969 by E. F. Codd [Cod09],
and the subsequent advent of Relational Databases and query languages, these became
the method of choice to keep large amounts of related data.

Aside from the above mentioned capabilities, one of the main reasons for using databases
is the simplicity of creating concurrent programs that access a vast quantity of data, with-
out needing to care about implementing concurrency mechanisms, such as locks or mon-
itors. The programmer can easily aggregate operations in Transactions, while the database
itself will deal with the concurrency, guaranteeing everything works correctly.

2.4.1 Transactions

A Transaction is a logical unit of execution in a database. Much like the transactions
discussed in Section 2.2.3, a database transaction is a set of operations that are made on
the database’s data, both read and write, while guaranteeing that either all operations
are executed or none are, making sure the transaction transforms the database from one
consistent state to another consistent state, whether the transaction fails or succeeds.

Partially
Committed

Active

Failed Aborted

Committed

Figure 2.4: A Transaction’s State Di-
agram (taken from [SKS06])

Once created, a transaction may be in one of five
states (see Figure 2.4): Active, while the transaction
is executing; Partially Committed, after it executes
the last operation, but before it may actually be con-
sidered as successfully finished; Committed, as soon
as all its changes are successfully written on disk;
Failed, if any problem was raised while executing
the transaction, such as conflicts between transac-
tions; and Aborted, once all the changes made by the
transaction have been rolled back and the database
is restored to its previous state.

Database transactions are bounded by a set of
four properties, known as ACID — Atomicity, Consistency, Isolation and Durability:

20

2. THE FILE SYSTEM 2.4. Transactional Semantics

Atomicity Either all operations belonging to the transaction are applied on the database,
or none are. If they are successfully executed and applied in the database, from the user’s
perspective, it appears as if they were atomically executed. If any of the transaction’s con-
stituent operations fails, then the transaction does not succeed and the transaction leaves
no traces from its execution on the database.

Consistency The database is always kept consistent. Whenever a transaction commits,
the database state switches from one consistent state to another consistent state.

Isolation From the transaction’s point-of-view, it appears as if it is executing alone in
the system. The behavior of a transaction does not affect another transaction’s execution,
regardless of the number of transactions executing concurrently.

Durability Once a transaction commits, its results are permanent and available to all
subsequent transactions, even if there are system failures.

All the above properties have their own objectives and compliance with each one of
them guarantees transactional semantics. However, there is a co-dependance between
them. For instance, if a transaction is unable to fully comply with the Atomicity property,
it may cause an inconsistent database state. The same is true for the Isolation property.
Even if the Atomicity property is ensured for each transaction executing concurrently,
their operations may interleave in an undesirable way, and if the Isolation property isn’t
fully complied with, then we may incur in an inconsistent state. A method to enforce Iso-
lation, avoiding concurrency-related problems, is by forcing full transaction serialization;
i.e., transactions are executed one after the other. This approach, though guaranteeing
full Isolation for each transaction, diminishes concurrency and may cause performance
degradation on the overall system.

Although it may be easier to run transactions serially, there are several benefits from
allowing them to run concurrently, somehow similar to the benefits of allowing concur-
rent programs to execute in an operating system, such as higher resource utilization and
reduced waiting time. For instance, if we execute transactions serially, the system is
able to schedule a transaction while another is blocked waiting for some disk I/O, thus
increasing CPU utilization and the system’s throughput. Also, allowing concurrency
between transactions, smaller transactions do not have to wait for a longer transaction
to finish in order to execute. We will not get into specifics regarding the various isola-
tion levels contemplated by the ANSI SQL standard [Ame92], and will rather focus on
allowing concurrency while guaranteeing transaction serialization — i.e., the result of ex-
ecuting transactions concurrently is the same as if they were executed one after another.

A common method to achieve transaction serializability is by employing Multi-Version
Concurrency Control (MVCC) mechanisms. Using MVCC, when a transaction T1 commits
and writes its data, the database will not overwrite the existing values; instead, a new

21

2. THE FILE SYSTEM 2.4. Transactional Semantics

version of the values will be created. This approach will guarantee that a transaction T2,
that began before T1 committed, will not have to abort if it reads a value changed by T1,
because the database will make sure T2 reads the previous version of the data. In this
case, T2 may be serialized before T1, as if it happened before T1 committed thus ensuring
serializability.

Snapshot Isolation [BBG+95] is a type of Multi-Version Concurrency Control. By exe-
cuting each transaction on a snapshot of the database, taken at the start of the transaction,
it is possible to ensure full concurrency with other transactions. As the transaction will
be run on its own copy of the database, it runs in full Isolation mode, and all the reads it
makes will be fully consistent with the time the transaction began. However, the transac-
tion is not immune to conflicts with other transactions. The transaction will successfully
commit if, and only if, the values changed by the transaction on the snapshot have not
been externally changed on the database (i.e., committed by another transaction). If so,
the transaction must be aborted. With Snapshot Isolation, read-only transactions never
abort.

2.4.2 Bringing Transactional Semantics to the File System

Following the dissidence of high volumes of data to database systems, programmers
started lusting the amazing guarantees these systems provided and how easy it became
to create concurrent applications that would access the data. Concurrency control mech-
anisms are tricky to implement correctly, susceptible to misbehaviors such as deadlocks,
and may considerably limit concurrency in an application. In databases, on the other
hand, the programmer does not have to implement concurrency control mechanisms,
delegating that task to the database. Nevertheless, in certain situations, using a database
is overkill. In order to provide such guarantees, databases actually impose some over-
head, although it is frequently ignored because the benefits are frequently much greater
than the performance loss. Take an application that only requires keeping some configu-
ration properties for a set of system programs, each of them scattered throughout the file
system in different files. If one wants to guarantee that either all configuration changes
are updated, or none are, guaranteeing that the configuration as a whole is kept consis-
tent at all times, one may automatically ponder using a database for the task. However,
in this case, using a database may not be viable: the system programs may be of different
nature, one may not be able to change how they read their configurations, and the sim-
plicity of the task at hand may not justify imposing the usage of a full-fledge database
system. Using a simpler database system, such as SQLite [Hip] or the Berkeley Database
(BDB) [OBM99], one would avoid the overhead of more complex database systems, but
as both these implementations are software libraries, applications must be crafted to use
them.

Soon started to became clear that transactional semantics could be useful in other

22

2. THE FILE SYSTEM 2.4. Transactional Semantics

contexts besides databases. Back in 1977, D.B. Lomet [Lom77] proposed a program-
ming mechanism to ensure the consistency of data shared between several processes,
by using a construct to ensure atomicity in the system, analogous to the atomic prop-
erty of database transactions. Apparently, the idea was forgotten for a couple of decades,
probably because Lomet’s paper explicitly disclaimed providing an implementation. Al-
though, in 1993, Maurice Herlihy proposed the Transactional Memory model, which al-
lowed for lock-free mechanisms with the efficiency of traditional lock-based mechanisms,
guaranteeing some of the database transactions semantics. However, this proposal re-
quired specific hardware to fulfill the task. Not long after, in 1995, Nir Shavit and Dan
Touitou published the paper that coined the concept of Software Transactional Memory [ST95]
(STM), describing the first implementation of Transactional Memory, which provided an
abstraction to access memory locations without requiring blocking mechanisms to ensure
correctness, but incurring in significant memory overhead. Since then, there has been a
growing interest in the community to develop non-intrusive methods to bring transac-
tional semantics from the databases into general programming contexts [DSS06, Cun07],
borrowing the ACI semantics, dropping Durability as it is not applicable in volatile mem-
ory. Furthermore, database mechanisms have been a source of inspiration for implemen-
tation decisions on other aspects of Software Transactional Memory, such as concurrency
control methods based on multi-versioning schemes [Cac05].

Although STM makes the programmer’s life easier by handling the required concurrency-
control mechanisms, it isn’t free of problems. One of them is the inherent incorrectness
when using I/O primitives. The first property in ACID — Atomicity — relies on guar-
anteeing that if a transaction aborts its effects are never visible. However, using I/O
inside a transaction is tricky because, generally, I/O is permanent. One may try to de-
lay the I/O operations until the transaction commits, but there are situations in which
that behavior is not acceptable (e.g., interactive application requiring user input) or may
lead to unexpected states (e.g., one may eternally wait to read or write to a socket or IPC
channel). It is possible, however, to implement file system I/O using a STM framework,
and there are works proving just that, such as Artur Martins’ Transactional File System
(TFS) [Mar08], which relies on the Consistent Transactional Layer [Cun07] to provide file
system transactions. This approach, relying on linking the target application with a STM
library, although proving the possibility of applying transactional semantics on the file
system, lacks in performance and transparency to applications.

Bringing transactional semantics to the file system has been a focus of great interest
in the community, which is reflected by several works in the area in the last few years.
For instance, back in 1993, Michael Olson developed the Inversion File System [OA93],
which would be part of the Postgres DBMS up until 1995. This file system relied on a
Postgres database, using it to keep both data and metadata, providing transactional se-
mantics and fine-grained versioning. However, programmers would have to link their
applications with a special-purpose library in order to use the file system and harvest

23

2. THE FILE SYSTEM 2.4. Transactional Semantics

its capabilities. Later on, circa 2002, the Database File System [MTV02] (DBFS) was pre-
sented, proposing to improve what had been accomplished with Inversion, by not only
offering a special-purpose library providing an interface to the programmer, but also al-
lowing to transparently mount the file system over NFS. Using the Berkeley Database
as backend, the authors of the DBFS concluded that programming complexity could be
reduced by delegating the concurrency control to the database, while providing trans-
actional semantics (specially regarding atomically changing the file system). In the end,
DBFS demonstrated to perform worse than a native file system, but not as bad as to im-
mediately discard the idea of effectively bringing transactions to the file system.

Subsequent implementations of transactional file systems include Nuno Luís’ Trans-
actional File System Over Fuse [Luí09] (c. 2008), which is inspired in the TFS but aiming at
implementing it using Linux’s File System in User Space (FUSE) [FUS], therefore provid-
ing full abstraction to applications while supporting implicit transactions (i.e., every I/O
operation is regarded as belonging to a transaction), thus avoiding the need to rewrite an
application to support transactions.

A different approach has been taken by the creators of the TxOS [PHR+09], a modi-
fied Linux 2.6.22 kernel, providing serializable system transactions with strong isolation.
The authors modified 150 system calls, most of them totally supporting transactional se-
mantics, which totals about half of the grand total of existing system calls in the modified
version of the kernel.

In TxOS, system transactions may be considered as an abstraction allowing the pro-
grammer to update several system resources with ACID guarantees (enforced by the op-
erating system). With the transactional semantics guarantees provided by system trans-
actions, one is able to solve several issues in current operating systems whose solutions,
although not impossible, may require some complex programming. For instance, the
ability of running operations in full isolation will avoid time-of-check-to-time-of-use vul-
nerabilities, and also provides the mechanisms to easily roll back failed software installs.
In addition, if system calls have transactional semantics, one will be able to safely use
them inside transactions, avoiding traditional issues regarding I/O — although, com-
munication channels’ system calls don’t support transactional semantics.

24

3
Btrfs — A New Generation File

System for Linux

3.1 Introduction

Our work may be seen as yet another attempt at bringing transactional semantics to the
file system. As discussed in Section 2.4.2, implementations range from the application-
level to the operating system itself. Most of these approaches are purely academical, and
they either don’t perform reasonably well to be used in real-life applications, or they are
too pessimistic and limit concurrency. We expect to contradict this tendency by extend-
ing a full-fledged file system, used in high-performance applications, and guaranteeing
transactional semantics without compromising concurrency.

3.2 Introduction to Btrfs

Btrfs is a Linux file system from Oracle, aimed at being the next-generation file system
for Linux systems and to suppress the gap between Linux and other operating systems
with high-availability, high-performance file systems (such as Solaris with ZFS). Among
its objectives, Btrfs introduces disk pooling, integral multi-device spanning file systems,
checksumming and snapshots, as these are some of the required features that will allow
Linux to easily scale into larger storage configurations as demanded nowadays. Further-
more, similarly to ZFS, Btrfs intends to deliver these features with a clean management
and administration interface, reducing the burden imposed on the user.

25

3. BTRFS — A NEW GENERATION FILE SYSTEM FOR LINUX 3.3. Btrfs’s Trees

Internally, all file system metadata is kept in modified B-Trees [Rod08], similar to B+-
Trees, hence the name B-tree file system from which Btrfs derives1. Any tree in Btrfs may
store various data types, by using generic items identified by 136-bit keys. These keys are
internally read as triplets of concatenated values in the form [ObjectID, Type, Offset],
providing insight to the item Type they represent (predefined 8-bit value), and to which
entity the item belongs to (64-bit ObjectID); the Offset is a 64-bit value which is type
specific and may represent many different things. This key format allows each tree to
hold multiple item types for each ObjectID, while keeping them close to each other.
Performance-wise, this becomes very useful since the file system may leverage the con-
tiguous nature of related keys and items within tree leaves.

In Figure 3.1 we depict the relation between keys and items within a Btrfs tree. Con-
sidering that a leaf is mapped onto a disk block (by default with a size of 4 KB), in the
block’s beginning we find the leaf’s header, which describes (among other things) the
amount of items within the leaf. However, items have a variable size, which makes them
hard to correctly obtain and manipulate. Therefore, Btrfs puts the items in the end of the
leaf, and for each one keeps a fixed-size Tree Item in the beginning. These tree items are
responsible for providing the offset (within the leaf) where the item resides, while being
tightly kept with a key, which uniquely identifies (and describes) the item.

Tree
Item

Key #1
Tree
Item

Key #2
. . . Free SpaceTree

Item

Key #n Item
#n Item #2. . . Item #1Header

Figure 3.1: Depiction of a Tree leaf

This approach, however, suffers from internal fragmentation. Both the tree items and
the keys have a fixed size, but they may refer to any kind of item, which are represented
by different data structures with different sizes. In the end, the Free Space in the leaf may
not be enough to allocate another pair (key, tree item) and its respective item, resulting in
wasted space. Nonetheless, this side-effect is an acceptable trade-off to achieve perfor-
mance over storage efficiency.

3.3 Btrfs’s Trees

By default, and at any time since the file system is created, Btrfs has seven core trees, in
which all information required by the file system is kept compartmentalized according to
their specific purpose, as described in Table 3.1. However, additional trees, correspond-
ing to Subvolumes and Snapshots, may be dynamically created using a user-level file
system administration tool.

In the next sections we shall provide further details on three of the trees of Table 3.1 —
Roots Tree, Extents Tree and FS Tree — as well as on subvolumes and snapshots, since our

1Alternate meanings such as Better FS are used.

26

3. BTRFS — A NEW GENERATION FILE SYSTEM FOR LINUX 3.3. Btrfs’s Trees

Name Description Stored Information

Roots Tree Keeps pointers to the remaining trees in
the file system

Metadata

Extents Tree Keeps pointers to the currently allocated
extents

Data and Metadata

Chunk Tree Upon dividing the disk into chunks, keeps
track of their information

FS Data

Devices Tree Each physical disk belonging to this file
system will have an entry in here

FS Data

File System’s Tree Default file system tree Data and Metadata

Checksum Tree Keeps the checksums for all existing ex-
tents

Metadata

Log Tree Tracks the pending operations to be ap-
plied to disk

Data and Metadata

Table 3.1: Btrfs’s Trees and their purpose

work heavily depends on both these two last concepts.

3.3.1 Roots Tree

[EXTENT_TREE, ROOT_ITEM, 0]

[FS_TREE, ROOT_ITEM, 0]

Roots Tree

...

[FS_TREE, ROOT_REF, 258]

...
[257, ROOT_ITEM, 0]

[258, ROOT_ITEM, 42]

[258, ROOT_BACKREF, FS_TREE]

...

[FS_TREE, ROOT_REF, 257]

[257, ROOT_BACKREF, FS_TREE]

.

.

.

Figure 3.2: Roots Tree directory-like
behavior

The Roots Tree comes as a solution to the dynamic
nature of Btrfs’s subvolumes and snapshots. This
tree is little more than a directory of tree roots,
making the Roots Tree also known as the Tree of
Tree Roots, associating names to locations. Each
tree in the file system is assigned an unique iden-
tifier (an ObjectID), and is mapped in the Roots
Tree with three different entry types: ROOT_REF,
which associates two trees in the sense that one
can be reached (within the file system) through
the other; ROOT_BACKREF, referencing a tree’s name;
and ROOT_ITEM, which pinpoints a tree’s on-disk lo-
cation. Depending on the tree to which the item be-
longs, so depends the key’s ObjectID. For instance,
all the trees described in Table 3.1 have predefined

identifiers, known to the file system; on the other hand, any Subvolume or Snapshot will
be assigned sequential identifiers with values greater than 256.

Up until now, we have spoken of subvolumes and snapshots as two related con-
cepts, albeit distinct; however, from Btrfs’s point-of-view, they are just the same. In the
Roots Tree, both subvolumes and snapshots are simply considered Roots and are mapped
with the same item types as other trees (i.e., items of type ROOT_REF, ROOT_ITEM and

27

3. BTRFS — A NEW GENERATION FILE SYSTEM FOR LINUX 3.3. Btrfs’s Trees

ROOT_BACKREF).

In Figure 3.2 we illustrate how the Roots Tree is populated by keys. For instance, take
those with type ROOT_ITEM. As we just mentioned, these will keep the on-disk location
of the tree they refer to. The key’s first value is the ObjectID of the tree the key refers
to, whether it is a core file system tree (EXTENT_TREE or FS_TREE, in this example), or
a subvolume or snapshot tree (ObjectID’s equal to 257 and 258, respectively). From the
file system’s point-of-view, there is no difference whatsoever between a snapshot and
subvolume; however, in the Roots Tree we are able to distinguish them through the key’s
Offset field: when its value is zero, then it is a subvolume; otherwise, it is a snapshot.

Regarding the items of type ROOT_REF, these are used to easily determine where to
look for the trees in case of path based operations. For instance, the key [FS_TREE, ROOT_REF, 257]

indicates that a reference to the tree with ObjectID = 257 may be found within the
FS Tree. Analogously, the items of type ROOT_BACKREF indicate within which tree is a
given root contained — the key [257, ROOT_BACKREF, FS_TREE] states that the root with
ObjectID = 257 may be found within the FS Tree.

3.3.2 Extents Tree

Back in Section 2.2.2 we explained that an Extent is a group of contiguous blocks, holding
related data, with the purpose of leveraging its proximity in order to reduce disk seeks. In
Btrfs, extents are used with several purposes, let it either be holding tree nodes/leaves, or
file’s data. In fact, the file system aggregates extents into distinct block groups, which are
defined as either holding data — such as file contents — or metadata — such as trees and
their nodes/leaves. By taking advantage of these block groups, a file is able to maintain
the on-disk locality of its contents.

The Extents Tree is thus responsible for mapping the existing extents in a straight-
forward manner, tracking the space usage, along with the available extents, in order to
facilitate the allocation of new extents or their removal. Each entry in the Extents Tree will
keep, among other information, the on-disk location of the extent it represents, along
with its length and a reference count. This reference count is essential when taking ad-
vantage of the Copy-on-Write nature of snapshots, since it makes it possible to share ex-
tents between different file system trees. This capability to share the same extents, among
multiple distinct file system trees, is quite useful for our work, as shall be discussed later
on Section 4.6.

3.3.3 File System Tree

The FS Tree is where the files and directories live by default in a Btrfs file system. This tree
will hold items referring to inodes, directories and their names and associated metadata,
ordered in a fashion similar to that described when we discussed the Roots Tree.

Within the FS Tree, inodes are mapped using INODE_ITEMs, which hold inode-specific
informations, such as the inode’s mode and link count. The inode’s data may also be kept

28

3. BTRFS — A NEW GENERATION FILE SYSTEM FOR LINUX 3.3. Btrfs’s Trees

embedded in the item if its size so justifies it. However, if the inode has larger amounts
of data, one or more EXTENT_DATA items will exist nearby the INODE_ITEM, pointing to the
extent where the data lies. Optional metadata, such as Access Control Lists (ACLs), will
be held in specific items, also leveraging the locality principle of Btrfs’ trees. Additionally,
each inode has one (or more) INODE_REF items, which associate a name to the inode, while
allowing upward traversal of the file system hierarchy, since it keeps a reference to the
directory holding the name (i.e., its parent directory) — in case of multiple hard links,
there will be multiple INODE_REFs.

[256, INODE_ITEM, 0]

File System Tree

...

...
[270, INODE_ITEM, 0]

[256, DIR_ITEM, H1]

location: [270, INODE_ITEM, 0]

[256, DIR_ITEM, H2]

location: [257, ROOT_ITEM, 0]

[256, DIR_INDEX, 2]

location: [270, INODE_ITEM, 0]

[256, DIR_INDEX, 3]

location: [257, ROOT_ITEM, 0]

[270, INODE_REF, 256]

[270, EXTENT_DATA, 0]

...

Figure 3.3: Contents of the
File System Tree

Each INODE_ITEM may refer to either a file or a directory.
In case of a directory, the FS Tree will also contain a DIR_ITEM
and a DIR_INDEX item for each entry in that directory. Both
these items will hold the location of the INODE_ITEM associ-
ated with the entry, as well as the entry’s name. The differ-
ence between these two items is that the DIR_ITEM will have
its key’s Offset set with the entry’s name hash, allowing for
faster path-based operations, while the DIR_INDEX will have
the entry’s index within the directory, with the purpose of
providing predictable directory reads. Additionally, both
the DIR_ITEM and the DIR_INDEX may refer to a ROOT_ITEM
instead of an INODE_ITEM. This is the verified case when a
subvolume or a snapshot is created within the tree’s hierar-
chy, and serves as an indication to the file system that further
lookups should be made to the root referred by location field
in both these two items, as illustrated in Figure 3.3.

Regarding this figure, taking the first key in the tree, no-
tice how it represents an item of type INODE_ITEM, which lets
us assume it refers to a directory, with an inode value of 256
(the ObjectID holds the inode’s value). In this case, the inode also corresponds to the
tree’s root directory — each file tree, let it either be the FS Tree or any subvolume or snap-
shot tree, defines its root as having the inode 256; this inode is used to represent the parent
of all that is added onto the first level of the tree’s hierarchy.

This leads us to the next keys in the tree, of type DIR_ITEM. Both have their ObjectID= 256,
meaning they still refer to the INODE_ITEM just described; in a nutshell, both these items
describe directory entries within the FS Tree’s root directory. In this case, one of the di-
rectory items refers to a file belonging to the FS Tree, while the other refers to a directory
used as an entry point into another tree. We have omitted the file’s names in both items
since they are not relevant for the task at hand.

Following the INODE_ITEM with ObjectID = 270, we find ourselves in the presence of
the inode’s metadata. First, we encounter an INODE_REF, with an Offset = 256, meaning
there is a name for this inode held by a directory with inode value 256 (which we have
just seen is the tree’s root directory). Additionally, we find an EXTENT_DATA item, which

29

3. BTRFS — A NEW GENERATION FILE SYSTEM FOR LINUX 3.3. Btrfs’s Trees

will pinpoint the location of the inode’s data.

3.3.4 Subvolumes and Snapshots

SV

A

SSSnapshot

B

(a) Creation of snapshot SS
based on subvolume SV

SV

A B'

SS

B

(b) Effect of changing element B on
SV

Figure 3.4: Depiction on how Btrfs’ Snapshots and Subvolumes work.

In Btrfs, Subvolumes and Snapshots are full fledged File Trees, just like the FS Tree:
they have on-disk trees, hold files and directories and have an independent inode allo-
cation policy, which basically means that between trees we may have different files with
the same inode value, just as if they were different volumes of the same file system.

However, a subvolume or a snapshot are nothing but a user-level abstraction. Tech-
nically, from the file system’s point-of-view, they are just about the same. The only dif-
ference is that a subvolume is created empty, while snapshots are logical copies of sub-
volumes. This means that we may create a subvolume at any time, for any purpose we
intend, but a snapshot must be taken from an existing file system tree, which typically
means taking it from a subvolume, although it may also be taken from the FS Tree.

Being a logical copy, from the user’s perspective, the snapshot contains everything
that the subvolume contained when the snapshot was taken; for the file system this is not
quite so. In fact, when the snapshot is taken, the only thing that is actually created is its
tree’s root, which will point to the same extent where the subvolume’s root node is kept.
Using a policy of Copy-on-Write, Btrfs is able to share unmodified data (both tree metadata
and file data); as soon as a write on one of the trees targets a shared extent, the said
extent will be copied and will become local to the tree through which it was modified,
as illustrated by Figure 3.4, where we represent both the creation of a snapshot from a
subvolume, as well as the effects of changing a file (initially shared) in the snapshot.

By supporting subvolumes and snapshots, and by intermixing these with the file sys-
tem’s default file tree (FS Tree), Btrfs allows one to create a hierarchy based on the one’s
needs, by opening the door to hierarchies where subvolumes and snapshots coexist with
common files and directories. As an example, take a file system hierarchy commonly
used in *nix systems, where the users’ home directories are kept in /home’s and system
resources in /usr. If we used Btrfs as the system’s root file system, and being the FS Tree
the volume’s default tree responsible for keeping files and directories, we would assume

30

3. BTRFS — A NEW GENERATION FILE SYSTEM FOR LINUX 3.4. Summary

that from the / downwards, all files and directories would be created within the FS Tree.
Nonetheless, we could also create two additional subvolumes in Btrfs: one for /usr and
another for the skeleton home directory (say, /etc/skel).

Such an hierarchy would be useful for two different reasons: first, being the skele-
ton home directory a subvolume, upon creating new users we could simply snapshot
/etc/skel, which would be useful (storage-wise) if the users shared a lot of resources
on their home directories but didn’t actually change them much; secondly, by using a
subvolume as the /usr directory, we could snapshot it each time before upgrading some
software, and revert back to the snapshot if needed — Red Hat’s Fedora 13 has this kind
of support in the yum package management utility [Fed].

Furthermore, Btrfs allows both subvolumes and snapshots to be mounted directly,
which becomes useful if one does not want Btrfs’s default file system tree (FS Tree) as the
system’s root, but does want to mount specific subvolumes and snapshots throughout
the file system hierarchy.

3.4 Summary

Btrfs has a large code base compared to other popular linux file systems. Out of curiosity,
Btrfs has four times the (real) lines of code that ext3 has, and twice as much as ext4,
rounding a grand total of roughly 46 thousand lines. What we have presented during
this chapter is roughly equivalent to a fourth of the whole file system code. It is then easy
to conclude that we focused on a limited part of the file system.

All the concepts, namely keys and items, in Section 3.2, and the trees presented in
Section 3.3, were lightly explored. There is much more to them, but their details are
outside the scope of this dissertation. Our objective with this chapter was not to give
a crash-course on Btrfs internals, but to lay the path for Chapter 4, in which we shall
describe our work towards a transactional file system.

Despite the fact that we resorted to all these concepts, the truth is that we barely han-
dled them directly. Aside from items and keys, we almost were not required to directly
handle any of them, thanks to the large set of methods, available in Btrfs, to manipu-
late the most varied data structures, mainly trees. Therefore, we focused on our work,
and were able to keep our implementation apart from Btrfs’s as much as possible, even
avoiding to touch Btrfs’s code unless it was otherwise imperative.

31

3. BTRFS — A NEW GENERATION FILE SYSTEM FOR LINUX 3.4. Summary

32

4
TxBtrfs — A Transactional File

System Based on Btrfs

4.1 Introduction

By taking advantage of Btrfs’ snapshot capabilities, we expected to provide transactional
semantics in the file system so applications could benefit from the isolation guaranteed
by executing the operations on a private file system copy. However, this meant to asso-
ciate each transaction with a private snapshot, and Btrfs does not support this behavior
straight out of the box. Furthermore, given the nature of Btrfs and its support for multi-
ple subvolumes, we believed that forcing the whole file system to be transactional would
be stepping over our bounds and constraining the user beyond his needs.

These beliefs steered us into defining a new concept of subvolume: the Transactional
Subvolume, or TxSv. A Transactional Subvolume is pretty much the same as a regular Btrfs
subvolume, but marked as expecting all operations as being part of some transaction, so
they may take advantage of the file system’s transactional semantics. At any point in
time, any given existing subvolume may be marked as a TxSv, although only one TxSv
will be allowed at a time, either by using a Btrfs-specific user-level management tool, or
by directly issuing an IOCTL system call.

Currently, TxBtrfs assumes all accesses should be transactional, although any non-
transactional operations that are issued directly onto the transactional subvolume will
always succeed. Nonetheless, any operations performed will be logged as well, and the
next committing transaction will be forced to validate against those changes. However,
full support for non-transactional accesses is still a subject under study, and currently

33

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.2. TxBtrfs in a Nutshell

may lead to some unforeseen, catastrophic, consequences (such as file system corrup-
tion), and are highly discouraged.

4.2 TxBtrfs in a Nutshell

Creating a transactional file system raises several questions: what is a transaction from
the file system point-of-view, when and how do they start and finish, and in what state
is the file system left in after a transaction completes (either successfully or not).

From TxBtrfs’ point-of-view, a transaction is composed by all operations between a
Start Transaction and a Commit Transaction1. These operations are specific to TxBtrfs and
take the form of IOCTL system calls, although they may be mapped onto a user-level
library for simplicity’s sake. When defining how the file system should behave regard-
ing transaction creation, we pondered supporting only implicit transactions, starting a
new transaction on open(2) and committing it on close(2). However, several prob-
lems may arise from implicitly starting and committing transactions, mainly due to the
nature of the POSIX standard, which assumes each operation to be independent and any
erroneous behavior strictly affects the operation raising the error. One simple example
is the case where a single operation, from a set of read/write operations issued between
an open and a close, conflicts with another transaction. If the conflict is detected only
at close(2) time, one would have then to inform the application of such conflict, and
hope the programmer checked for errors on close(2), an operation usually assumed to
succeed.

In order to avoid problems raised by unsuspecting users, and to avoid clashing against
the POSIX standard, we chose instead to define IOCTLs to be called from the user-level,
which would in turn start and commit a transaction on-demand. During this document,
these operations take the form of TxStart and TxCommit. Both will take an argument,
TxSv path, which is the location of the Transactional Subvolume on which to run the
transaction.

The following sections roughly describe the impact of the TxStart and TxCommit

operations on the file system, as well as how applications and processes are associated
with transactions. Later on in this chapter we shall dwell deeply into this subjects, giving
further details on both their behavior and implementation.

4.2.1 Starting a Transaction

Issuing a TxStart operation may be seen as an admission of intention, by the applica-
tion, to associate the issuing process to a transaction — transactions are associated with
processes, not with the application itself.

Once a TxStart is invoked, TxBtrfs will create a copy of the TxSv and assign it to the
process starting the transaction. This copy is merely logical, as it is in fact a snapshot of

1At the moment, TxBtrfs does not support an Abort Transaction operation (see Section 6.2).

34

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.2. TxBtrfs in a Nutshell

the Transactional Subvolume. In reality, the snapshot may not even be created, as long as
the process starting the transaction is already part of a transaction by itself, as we shall
discuss later in Section 4.4, since TxBtrfs allows a certain degree of transaction nesting.

The application is oblivious to the snapshot creation phase, and even though its pro-
cesses are mapped onto a snapshot of TxSv the application will still believe to be ac-
cessing the Transactional Subvolume directly (the mapping process shall be explained
in further detail in Section 4.3). After the transaction is created, every operation issued
during its course of execution targeting the Transactional Subvolume will be transpar-
ently mapped into the transaction’s private snapshot, while being guaranteed that only
processes participating in a given transaction will be able to modify that transaction’s
snapshot. This strict association between processes and transactions allows us to guar-
antee that each transaction runs fully isolated from other concurrent transactions.

4.2.2 Committing a Transaction

Committing a transaction is a three-phase process: Conflict detection, Reconciliation and
updating the Transactional Subvolume’s (TxSv) root.

Conflict detection is common in distributed and replicated file systems, such as the
Coda file system, which detects conflicts when two replicas perform operations (on the
file system) that may not be compatible [KS93], or even in file system synchronizers, such
as Unison [BP98]. Our work, although being kept local to a single file system volume,
may be seen as replicated for concurrent transactions: we do replicate the TxSv each time
a transaction starts, and when the transaction ends we must guarantee its modifications
do not clash with other operations that may have happened in the meantime. For this
reason, when a process invokes a TxCommit, TxBtrfs will attempt to detect any potential
conflict between the process’s transaction and the current state of the TxSv by performing
a symbolic replay of a log containing the transaction’s operations. This symbolic replay
happens over in-memory data structures only, since we do not actually require to access
the disk in order to obtain the relevant informations to perform it, which will avoid im-
posing additional overhead on the system. The symbolic replay, which we will describe
later in Section 4.5, focuses on creating an in-memory representation of the current file
system hierarchy, against which will replay all the operations performed by the transac-
tion. If any of the operations conflicts during the symbolic replay, then the transaction
will be aborted; otherwise, TxBtrfs will assume the transaction to be valid regarding the
current TxSv’s state and may be freely applied.

Once a transaction is considered as being valid, we may then proceed with reconciling
it with the TxSv (Section 4.6). In the context of this document, we call Reconciling to
the process of merging two diverging states (the TxSv’s and the transaction’s). During
this phase, all updates made to the TxSv since the committing transaction began will
pulled into the transaction’s snapshot. Once this process is finished we may consider
that the snapshot is in a state consistent with all the previously committed transactions.

35

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.3. Processes & Transactions

We may then proceed to next and final stage, Committing the Snapshot, which may be
seen as changing a pointer from the TxSv’s root and pointing it to the snapshot’s root,
making the transaction’s snapshot the new Transactional Subvolume (also explored in
Section 4.6).

4.3 Processes & Transactions

TxBtrfs main goal when it comes to transactional accesses to the Transactional Subvolume
(TxSv) is to map those accesses in a snapshot associated with the process’ transaction, as
transparently as possible. This means creating an abstraction so, by accessing the TxSv,
the process unknowingly accesses the transaction’s snapshot.

When we started our work on TxBtrfs, we assumed that doing this mapping would
be a question of changing a path on-open.However, we realized this would not work
since the VFS does not work this way. In fact, path translation happens way before a
file system specific open is issued, and by that time the whole path has already been
looked-up and there is little we can to do.

This lookup process relies on the file system holding the file, and there is a method
which is called once the VFS wishes to translate a component of the path. We thought
about shifting the mapping to the file system’s lookup method, returning inodes from
the snapshot instead of inodes from the TxSv, but such approach wouldn’t work as well.
This results from the fact that the VFS lookup does not rely solely on the file system’s
lookup method, but also on the dentry cache, or dcache.

The dentry cache aims at improving overall system performance by reducing the re-
quired amount of lookups within the file system, and their more-than-likely disk ac-
cesses. Basically, once a dentry is looked up during path translation, it is put into the
dcache for subsequent usage. As the dentry is kept in-memory, lookups will first look for
the dentry in the cache, querying the file system only as a last resort. As each entry in
the dcache is both path and name based, trying to abstract accesses by returning different
inodes for the paths during lookup poses significant problems:

• Keeping the name of the transactional subvolume, changing only the inode it would
point to, and because the dcache is an open hash table, we would end up with ev-
ery single snapshot cached in the same bucket as the transactional subvolume. This
would probably become a bottleneck and a cause for overall performance degrada-
tion.

• Even if the previous problem was not an actually a problem, we would still have
an issue: comparing two different entries in the dcache is a string based operation
(i.e., if string A is equal to string B, then entry A equals entry B). From the moment
we put all the snapshot entries in the same bucket as the TxSv, all sharing the same
name with the TxSv, then whichever was the first to be encountered in the list

36

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.3. Processes & Transactions

would be the one returned, regardless the inode it would refer to. This would not
do if we were to get our job done.

One of our initial objectives was to provide a shared entry point for all transactions,
each accessing the TxSv and being internally mapped onto their snapshots, as if all the
snapshots were mounted in the same place but each transaction could only access its
own snapshot. However, due to the lookup method used by the VFS and to the inner-
workings of the dcache, we decided that each snapshot should be allowed to have a
specific name and be accessible by path, although only accessible by its own transaction
and nobody else. This way we would be able to use the underlying filesystem capabilities
regarding lookups, since we would be providing different names and paths to the dcache
in order to represent different inodes.

4.3.1 Mapping Processes onto Snapshots

Upon path translation, the VFS jumps through a lot of hoops before getting to the filesys-
tem’s lookup method, and, as stated before, by that time it would not be feasible to
change paths. However, prior to reaching the file system’s lookup, the VFS calls a
filesystem specific hash method, in case the filesystem wants to hash the entry in a
different way. Although we contemplated the possibility to assign different hashes to
different dentries based on the snapshot they belonged to, we would be betting a whole
lot of work on the assumption that no hash collisions would ever, ever happen. There-
fore, once the VFS reaches the hash method we simply change paths from the TxSv to the
process’ snapshot.

Once we are translating a path on TxBtrfs, we may encounter ourselves in one of four
distinct scenarios:

i) The path refers to a common, non-transactional, subvolume or snapshot.

ii) The path indeed refers to the TxSv, but the process looking it up does not have an
on-going transaction.

iii) The path refers to the TxSv and the process looking it up has an on-going transaction.

iv) The path refers to a dentry somewhere below the root of either the TxSv or a snapshot
of the TxSv.

If the path being translated happens to be on the first scenario, from TxBtrfs’ point-
of-view it is irrelevant, and there is no action to take since Btrfs itself will take care of all
non-transactional accesses. On the other hand, if it does belong to any of the remaining
scenarios we have to handle it.

Take second scenario, in which the path refers to TxSv’s root’s dentry. Such access
usually happens when a new transaction is being started, since the TxStart method
requires the TxSv root as an argument, and thus it must be translated by the VFS. We

37

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.4. Transaction Hierarchy

must not discard it, but we also must not map it to a snapshot as there is none where to
map the access on. Therefore, we simply let it slide and no path is actually changed.

If the process does have a running transaction, it means we are on the third scenario
and we must map the process onto its transaction’s snapshot. The mapping process is
quite simple, requiring us to determine to which transaction the process belongs to, and
changing the requested path from that of the TxSv to the path of the transaction’s snap-
shot. Determining if the process belongs to a transaction, and if so to which, is a matter
of querying a tree within TxBtrfs’ in-memory data structures, which uniquely maps Pro-
cess IDs (PIDs) to transactions, which keeps a record to the snapshot the transaction is
mapped to — if the process does not have an entry, then it does not belong to an on-going
transaction.

Finally, the fourth scenario is partly conceptual. If accesses are being performed down
TxSv’s tree, we assume they must be part of a transaction. Such assumption relies on the
fact that we do not guarantee file system consistency when non-transactional accesses
to TxSv occur. If these accesses are in fact part of a transaction, then their lookups are
not made on the TxSv tree, but on the transaction’s snapshot. Such happens to be true
because path translation is composed by multiple translations of each one of the path’s
components. Therefore, if we are to lookup a given component B in the path /A/B, we
know we have already successfully translated the component A. If A were to initially be
the TxSv, and the process looking up is part of an on-going transaction, by the time we
lookup B we already have A translated to the transaction’s snapshot, meaning we have
nothing else to do and we will let Btrfs handle the request without changing any more
paths.

4.4 Transaction Hierarchy

As it has been established in past sections, whenever a transaction is started both the
transaction and the process starting it are assigned to a private snapshot. For instance,
take any two processes, P1 and P2, and let us assume that each one of them are inde-
pendently executed and each of them starts a transaction. According to everything that
has been discussed so far, this means that TxBtrfs will create two different transactions,
mapping P1 onto one of the transactions’ snapshot, and P2 onto the other transaction’s
snapshot.

Despite the fact that TxBtrfs enforces each process to be associated with one, and only
one, transaction (and therefore a single snapshot), it is allowed that a single transaction
be associated with many different processes. However, such situation is only possible in
three distinct scenarios, all of them involving a process and its children, aiming to keep
the expected resource sharing semantics.

In Figure 4.1, we present one of such scenarios. Take Figure 4.1a, in which P1 starts a
transaction and then issues a fork(2) leading to the creation of P2. In this case, P2 will
inherit its parent’s (i.e., P1’s) transaction, and all transactional accesses P2 may issue on

38

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.4. Transaction Hierarchy

the TxSv will be mapped onto P1’s transaction’s snapshot until P2 finishes, thus the child
never conflicts with its parent. On the other hand, if P1 issued a fork(2) before starting
the transaction, then P2 would not inherit P1’s transaction as the transaction would not
exist at the time of P2’s creation. This behavior is illustrated in Figure 4.1b, and would
require for P2 to start its own transaction if it were to access TxSv, and now P1 and P2

may conflict.

TxStart

P1

P2

...

TxCommit

...

fork()
...

(a) fork(2) issued
during a transaction

TxStart

P1

P2

...

TxCommit

...

...
TxStart

TxCommit

fork()

(b) Parallel execution of P1’s
and P2’s transactions

Figure 4.1: fork(2) issued in different contexts

Let us focus on yet another scenario, similar to that of Figure 4.1a, in which P1 starts
a transaction and then forks P2. However, in this case P2 starts its own transaction while
within P1’s transaction. In Figure 4.2a we illustrate P2’s transaction nested within P1’s.
Since the child process shares its parent’s transaction, we hereby establish that any trans-
action started by the child or any of its descendants is considered as nested following a
flat nesting model [ALS06]. This means that any operation made during the nested trans-
action shall be considered as belonging to the outer-most transaction. As we can see, the
scenario presented back in Figure 4.1a is a particular case of the scenario in Figure 4.2a,
on which the child process does not start a transactions.

Finally, take Figure 4.2b, which presents the third and last scenario, in which the par-
ent’s transaction commits before the child commits its transaction. In this case we are
faced with an interleaving that could result in serious problems if we allowed the parent
to take the final word on when to commit the transaction, disregarding its child inner-
transaction. Therefore, we established that only the last commit will actually commit the
transaction. Using Figure 4.2b as an example, we have P2 starting its inner-transaction
during P1’s transaction, which may be seen as an increment on a counter within the trans-
action. While this counter is greater than zero, any issued commit will be void besides its
decrement of the said counter; only when P2’s commit is issued, and the counter finally
reaches zero, will the transaction be actually committed. wait for P2 to complete. Once
P1’s commit returns, even

Since TxBtrfs assumes every transactional access made by a child process being part of
the parent’s transaction (as long as the child has been created after the transaction start),

39

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

TxStart

P1

P2

...

TxCommit

...

fork()

...
TxStart

TxCommit

(a) Nested Transactions

TxStart

P1

P2
...

TxCommit

...

fork()

...
TxStart

TxCommit

(b) Interleaved Transac-
tions

Figure 4.2: Different scopes for inner-transactions

and because we do support both transaction nesting and interleaving, we consider a bad
approach all transactional accesses made by the child without being wrapped within a
transaction. In Figure 4.3 we illustrate how a transactional access by a child process P2

may become problematic. This case, similar to that of Figure 4.1a, begins with P2 being
created within P1’s transaction and performing any number of transactional accesses to
TxSv during its execution. However, at some point before P2 finishes, P1 commits its
transaction. From this moment on, any transactional access made by P2 won’t be part of
P1’s transaction as it no longer exists. Such example sustains our premise that all transac-
tional accesses should be wrapped in a transaction. If P2 had started a transaction, then
its behavior would have fallen into either one of the scenarios in Figure 4.2: either P2’s
transaction would have been nested within P1’s, or it would have been interleaved with
P1’s; regardless, both scenarios are correctly handled by TxBtrfs without compromising
the expected behavior when accessing TxSv. However, if the developer does not wishes
to create a transaction on P2 for a particular reason — for instance, in order to perform a
fork-exec for another application, and if that application is to perform accesses to TxSv —
then the developer should guarantee that the parent process waits for completion on P2

before committing the outer-most transaction.

4.5 Transaction Validation/Conflict Detection

When a transaction starts, it becomes isolated from the remaining file system, performing
its operations on a private snapshot of TxSv. During its execution, other transactions may
be started and committed, thus pushing forward the Transactional Subvolume’s state.
Upon commit, a transaction T1 may find the TxSv in one of two states:

• The TxSv is still in the same state as the one T1 inherited when it started, or

40

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

TxStart

P1

P2
...

TxCommit

...

fork()

...

transactional
access

Figure 4.3: Erroneous transactional access by P2

• At least one other transaction T2 committed, and the TxSv is now in a different state
than the one T1 inherited when it started.

In case there were no changes to the TxSv, then T1 is in perfectly good conditions to
commit. However, if that is not true, the transaction must go through a validation phase,
in order to check for potential conflicts between the transaction’s state and the TxSv’s
new state.

To validate the correctness of a transaction’s modifications to the file system, we must
assess which changes made in the TxSv are worthy of validating the transaction against.
With this purpose, when we start a transaction we assign it a generation value, which rep-
resents the last TxSv state known by the transaction. A transaction’s generation is always
equal to the generation of the TxSv the transaction started from. Take, for instance, two
different transactions (T1 and T2) which have started from the same known state of TxSv
with generation zero (generation = 0). Let us now assume that T1 commits before T2.
In this case T1 commits freely, simply because there were no other commits between T1’s
start and its commit, or, as we also may put it, because TxSv’s generation was still equal
to T1’s generation.

Committing a transaction such as T1 leads the TxSv onto a different state, which is
represented by increasing its generation. Thus, when T2 tries to commit, the state T2

will find the TxSv in will not be the same as the one T2’s snapshot initially inherited
(TxSv’s generation 6= T2’s snapshot generation). In this case, we must determine which
modifications were made between the last TxSv’s state known by T2 (generation = 0),
and the TxSv’s current state (generation = 1).

Hereinafter, and before we proceed, to a transaction’s last known state of TxSv we
shall call the transaction’s Master Copy, and to the set of modifications made on the Mas-
ter Copy leading to the TxSv’s current state we shall call ∆M . Lastly, to the set of modi-
fications made by the transaction onto its private snapshot we shall call ∆S.

41

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

4.5.1 Operation Deltas

During a process execution, any number of operations may be performed over the file
system, either creating, removing, reading or writing, anything is possible as long as
supported by the VFS. While executing, if the process is associated with a transaction
and it accesses the transaction’s snapshot2, we will log the performed operations so we
may use them during the transaction’s validation phase. These logged operations will
be the transaction’s ∆S, kept private to the transaction, and represent every action that
made the transaction’s snapshot to evolve from its initial state up to the state at commit
time, along with any operations performed that may result in a semantical conflict with
other transactions. For instance, a read(2) does not modify the snapshot, but does
present a potential cause for a semantical conflict, and for such conflict to arise it only
takes one transaction to write onto the same place that another transaction reads from.

Additionally there is the ∆M , which (as previously described) is the set of all modifi-
cations performed on the transaction’s Master Copy since the transaction began until it is
ready to commit. If we imagine a transaction that has committed onto the TxSv, we can
extrapolate the ∆M that took the TxSv onto the transaction’s state is the transactions ∆S,
stripped of its non-modifying operations (i.e., reads), since these do not actually alter the
file system. Generalizing, if we have a transaction T1 with generation gen = n, and if
the TxSv has generation gen = m, we may consider the ∆M as nothing more than the
union of all the (stripped) ∆S of all transactions that modified (i.e., committed on) the
TxSv since generation n until generation m:

∆M =
⋃

∆Si , n < i ≤ m

It is important to correctly understand these concepts in order to understand the val-
idation and conflict detection process, which we shall describe in sections to follow.

4.5.2 Initial Validation/Conflict Detection Process

At this point we have established the existence of two different sets, ∆S and ∆M , which
represent the operations performed in order to obtain two different states: with ∆S we
obtain the current state of the transaction T trying to commit, while with ∆M we obtain
the current state of TxSv from the point when T started up until the point when T tries
to commit.

We are then in conditions to evaluate if T performed any operation, during the time it
executed isolated from the remaining system, that may be in conflict with TxSv’s current
state. For instance, if T created a given file F1 in TxSv’s root directory, which was non-
existent at the time T started, and by some chance another transaction (now committed)
evolved the TxSv state up to a point where F1 also exists in the TxSv’s root, then we may

2As discussed in Section 4.3, although believing to be accessing TxSv, the process is mapped onto the
transaction snapshot.

42

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

conclude that T performed a modification that conflicts with the current TxSv state.

It is thus necessary to assess if the transaction trying to commit may actually commit.
Since we know both ∆S and ∆M , we may then compare the operations both these sets
hold. If we find the slightest possibility of a conflict, then the transaction’s commit should
not proceed.

When we began our work on TxBtrfs, we naively assumed that by simply logging
the operations and extrapolating both the ∆S and the ∆M we would be able to straight-
forwardly detect conflicts. Our approach at the time was to traverse ∆M and, for each
operation in ∆M , traverse ∆S looking for any operation that could trigger a conflict. It
didn’t take long before we realized how little thought we had put into such an approach.
The flaw with traversing both logs is not only the overhead imposed by an O(m×s) com-
plexity3, but also the inability to infer the relationship between operations. For instance,
if ∆M contains a create(F1), followed by an unlink(F1), from an external observer
point-of-view F1 is as good as non-existent in the final file system state. However, with
the approach we were taking, we would detect a conflict if ∆S contained a create(F1),
when in fact there would be no reason for such conflict to ever arise, assuming the same
parent directory, of course.

Even if we could gladly accept such false positives as a mean to obtain a correct (al-
though highly pessimistic) validation, we believed this approach to be too constraining
when it came to the next step of transaction commit: the reconciliation process. Although
the validation and conflict detection process is independent from the reconciliation pro-
cess (which we shall describe in detail later on) we have always believed there was no
point in wasting the precious work done during the log traversals. However, since our
initial approach kept no information whatsoever, we would have to traverse the logs once
more just to reconcile the transaction’s snapshot with the TxSv. All these issues led us to
define a different method to validate the correctness of the transaction’s operations and
perform conflict detection, while still keeping valuable information for later use during
the reconciliation process. We call this method Symbolic Log Replaying.

The way we see it, our Symbolic Log Replaying is much the same as any other log
replaying technique, except for the fact that we do not actually apply any of the log el-
ements being replayed onto the file system. Essentially, we take ∆M and ∆S and we
create an in-memory representation of the final state of the file system — i.e., a glimpse
of what the state would be if the transaction was successfully committed. This repre-
sentation is obtained by replaying all the operations on both ∆M and ∆S, one by one,
and applying their effects only on in-memory data structures, allowing us to detect con-
flicts more easily and still be able to (later on) use the information for the reconciliation
process, as shall be explained in Section 4.6.

3m and s being the number of elements on ∆M and ∆S, respectively.

43

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

4.5.3 Symbolic Log Replay

Our Symbolic Log Replay will not recreate the whole file system state. Since the trans-
action’s initial state contained any operation performed on TxSv prior to its beginning,
which stems from the fact that the transaction’s snapshot is a logical copy of the TxSv
at the time the transaction was started, we can safely assume that a transaction Ti does
not conflict with any transaction Tn that have successfully committed before Ti started.
Therefore, there is no reason to replay all operations ever performed on TxSv, as such
would not provide any advantage while validating the transaction and would introduce
unnecessary overhead.

However we do need to replay all the operations of all the transactions that may
have committed after Ti started (∆M), since Ti did not see them happening and does not
know in which state these operations left the TxSv. Thus, the Symbolic Log Replaying
algorithm is divided in two different phases:

1. Creates an in-memory representation of all operations that led the TxSv from the
last known state by Ti (i.e., from Ti’s Master Copy) up to the TxSv’s current state;
and

2. Will attempt to apply each and every operation in the transaction’s operation log
(∆S), detecting any conflict that may arise in the process.

The first phase, which we shall describe in Section 4.5.4 in detail, will have the addi-
tional responsibility of mapping each and every file creation onto the transaction’s snap-
shot. This necessity results from a peculiarity of Btrfs’ subvolumes and snapshots: be-
ing autonomous entities from Btrfs’ point-of-view, each one has its own inode allocation
scheme, which eventually leads to the same inode values being used for different files,
much like what happens between different file system volumes.

In Table 4.1 we represent the sets used during the Symbolic Log Replaying algorithm,
what is expected from each one of them, and how they are composed. Among these sets
we include both ∆M and ∆S, and we define six new sets: M2S, which maps TxSv’s inode
values onto their assigned snapshot inode values; Dir, which is the actual representation
of the effects of each operation belonging to ∆M , as reproduced by the algorithm; REM,
the set of files, originally from the transaction’s Master Copy, that are removed during
the log replaying; NLink, associating an inode value to its links count number, which is
to be maintained during the log replay; Blocks, keeping all the block intervals written
and the file they were written to; and DirtyDirs, which simply holds the inode value of
each directory modified during the log replay. All these sets will be actively used during
the Symbolic Log Replay algorithm, and some of them will also be used later on, if the
transaction reaches the reconciliation phase.

Populating these sets, however, is not a simple matter of traversing ∆M and ∆S,
adding each and every operation onto a given set, specially considering that TxBtrfs
currently supports over twelve different file system operations. However, most of the

44

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

pi Parent Inode Value (unsigned 64-bit)
fn Filename (string)
fi File’s Inode Value (unsigned 64-bit)
nl Inode’s Number of Links (Integer)
origin { Local, Global }
op Operation issued
data Specific operation data

Used solely while validating ∆M :

lpi Local Parent Inode
lfi Local File Inode

(a) Legend

∆M = (op × (pi × fn × fi × nl × data))
∆S = (op × (pi × fn × fi × nl × data))

Inode = unsigned 64-bit value

M2S = Inode × Inode
Dir = pi→ (fn × fi × origin)

REM = { (pi × fn × fi × origin) }
NLink = Inode→ Integer
Blocks = (pi × fn × fi × [start, end] × origin)

DirtyDirs = { pi }

(b) Sets

Table 4.1: Sets used during the Symbolic Log Replay

supported operations have similar effects when being applied during the Symbolic Log
Replay, which allow us to decompose them in a few sets of elementary operations. For
instance, in Table 4.2a and in Table 4.2b, we present how we decompose all of the opera-
tions that actively modify the file system structure — i.e., creation, removal and rename
operations — and those accessing files and directories while applying the Symbolic Log
Replay algorithm.

Create Unlink Link

Create X

Unlink X

Link X

mkdir X

rmdir X

Rename X X

Symlink X

mknod X

(a) Operations over the FS structure

Read Write Unchanged

Read X

Write X

mmap4 X X

Truncate5 X

Read Dir X

(b) Operations over file & directory contents

Table 4.2: Decomposition of operations that modify the FS.

In the next sections we shall describe in further detail how the Symbolic Log Replay
algorithm works, focusing on its two main steps: processing the ∆M and applying its op-
erations onto the the sets from Table 4.1b; and processing, validating and applying each
operation in ∆S against the sets resulting from the previous step. Traversing both ∆M

and ∆S in this fashion allows us to process both logs with a far more reduced overhead
4In reality, a mmap operation is not decomposed into a Read and a Write. In fact, a mmap is always a Read

operation, though we use this notation for simplicity’s sake, since its pages are written through an auxiliary,
non-POSIX method. We log both operations.

5How to deal with truncate(2) is still under study, and should be taken as future work.

45

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

than the approach initially considered (as described in Section 4.5.2), while creating the
necessary conditions to validate each of ∆S’s operations against the file system state they
should be performed on and detect any potential conflict that may arise.

4.5.4 Replaying ∆M

The objective of the Symbolic Log Replay algorithm when processing ∆M is to obtain
a representation of all the actual modifications sustained by the TxSv, while Ti executed
in isolation (Ti being the transaction that is now trying to commit). Obtaining such a
representation is essential to avoid conflicting either due to mock modifications during
∆M or due to operations that could trigger a conflict but, being intermediate, their real
effects don’t actually conflict with Ti (in Figure 4.4 we represent simplified ∆M logs and
the effects of the operations it contains on the different sets).

For instance, take Figure 4.4a, in which we exemplify a mock operation on /C, where
∆M is represented as containing a rename(2) operation, which is decomposed in a
Link/Unlink sequence, and both a create(2) and an unlink(2) over a file /C. The re-
name works over /A which was not created during ∆M , thus it must already exist in Ti’s
Master Copy; this means the algorithm must create a representation in which /B now
exists (Link) and /A has been removed (Unlink). Similarly, the create operation over /C
will add an entry to Dir, representing a creation Ti does not know about. However, ∆M

also issues an unlink over /C and, because /C was created during ∆M , being unlinked
during ∆M is the same as if it never existed at all. If we were using a simple list traver-
sal as described back in Section 4.5.2, we could have triggered a conflict on /C that the
Symbolic Log Replay algorithm is able to avoid.

∆M

Rename(/A, /B)
Create(/C)
Unlink(/C)

Dir
file: /B

REM
file: /A

(a) Mock operation on /C

∆M

Create(/E)
Unlink(/D)
Rename(/E, /F)

Dir
file: /F

REM
file: /D

(b) Intermediate operation on /E

Figure 4.4: Mapping ∆M onto Symbolic Log Replay’s sets

Another trivial example on the benefits of Symbolic Log Replay may be seen in Fig-
ure 4.4b. Since we are only interested in representing the state a transaction Ti is trying
to commit against, we may ignore intermediate operations that could trigger a conflict
if they were checked one by one. For instance, the final state represented in this figure
only contains a new creation of /F and a removal of /D (which must have originated
in Ti’s Master Copy). The creation of /E is ignored, because the rename(2) operation
will perform an unlink on /E, and since /E was created during ∆M both its creation and
deletion may be gracefully ignored — neither are part of the TxSv’s state the transaction

46

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

is trying to commit against.

When committing a transaction in TxBtrfs, it is not the ∆M ’s state that must be com-
patible with the transaction’s state, but rather the other way around. Therefore, during
the Symbolic Log Replay algorithm we always assume that processing ∆M is a straight-
to-the-point kind of operation, with nothing to be validated: ∆M is consistent with the
file system, as it represents (at least) part of the operations already applied onto the TxSv.
All there is left to do, while processing ∆M , is to make sure that all the operations are
added to the sets defined in Table 4.1b, so we may validate the transaction and detect any
conflict that may arise when the time for replaying ∆S comes (Section 4.5.5).

Replaying ∆M then becomes straightforward, without requiring the algorithm to
make any more decisions than those regarding which sets should be manipulated, de-
pending on the entry being processed. As established, each entry in ∆M represents an
operation performed on TxSv; however, each entry will not only include the performed
operation, but it will also provide all the informations that may be necessary for their
correct in-memory representation. For each entry in ∆M , the Symbolic Log Replay al-
gorithm will check which kind of operation is being processed (following the operation
decomposition as described in Table 4.2) and perform the according set-manipulation
steps (Algorithm 1).

Algorithm 1: Symbolic Log Replay algorithm’s first step: ∆M Replaying
1 forall the entry ∈ ∆M do
2 // lpi is the local representation of the entry’s parent inode
3 // lfi is the local representation of the entry’s file inode
4 if (entry.pi, i) ∈M2S then
5 lpi← i
6 else
7 lpi← entry.pi
8 end
9 switch entry.op do

10 case Create
11 call Create M(entry, lpi) // Algorithm 2
12 endsw
13 if (entry.fi, i) ∈M2S then
14 lfi← i
15 else
16 lfi← entry.fi
17 end
18 case Unlink
19 call Unlink M(entry, lpi, lfi) // Algorithm 4
20 case Link
21 call Link M(entry, lpi, lfi) // Algorithm 3
22 case Write
23 call Write M(entry, lpi, lfi) // Algorithm 5
24 case Truncate
25 // Still Missing!!
26 endsw
27 endsw
28 end

47

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

In Algorithm 1 we define a couple of local variables, lpi and lfi, representing a file’s
parent inode and the file’s inode value, respectively. We need these variables because a
given file’s inode provided in a ∆M ’s entry may not be directly mapped to the same
value during Symbolic Log Replay’s execution. This behavior is quite specific to any
operation decomposed to a Create, and results from Btrfs’ inode allocation policy among
snapshots or subvolumes, which allows them to allocate the same inode values as if they
were different file system volumes. Therefore, whenever a Create operation is processed
(Algorithm 2), the algorithm will define a new inode value for the entry being created,
and will map the original inode value (provided in the ∆M entry) to the newly allocated
value, using the set M2S for that purpose. Both lpi and lfi will then keep the inode
value expected during Symbolic Log Replay execution: if the entry’s inode exists in M2S,
then the inode must have been allocated during the algorithm’s execution; otherwise, the
inode must originate in the Master Copy — using M2S to assess the origin of an inode is
common practice on the Symbolic Log Replay algorithm, both in ∆M and ∆S replay.

When a Create operation is replayed during ∆M , besides having a new inode value
being allocated and inserted in M2S, the replayed entry must also be inserted into the Dir
set, associating the parent inode to the entry being added, in order to obtain a represen-
tation of the created file within the file system hierarchy. However, the entry added into
Dir is marked as being a Global entry. We believe this nomenclature to be more straight-
forward when describing where the entry originated: the global file system state, instead
of the transaction’s private snapshot (Local). This distinction between local and global
entries will be rather helpful when detecting conflicts during ∆S’s replay (Section 4.5.5).

Algorithm 2: Method Create M (∆M Replay)
Input: entry, lpi
Result: void

1 lfi← new Inode // generates a new inode value belonging to the
snapshot

2 Dir← Dir ∪ {lpi→ (entry.fn, lfi, global)}
3 M2S←M2S ∪ {entry.fi→ lfi}
4 NLink← NLink ∪ {lfi→ 1}
5 DirtyDirs← DirtyDirs ∪ { lpi }

Much like processing a create operation, when it comes replaying a Link (Algorithm 3),
the algorithm will add a new entry to Dir. Although, since a link(2) (or any operation
decomposed that may act as such) is issued over an existing inode, we do not require to
allocate a new inode value: we rely on lfi as the inode value, which should have been
determined a priori.

However, the Unlink operation is, by far, the most complex of them all. Replaying an
unlink (Algorithm 4) does not only affect the Dir set, but may also affect the REM set,
depending on the file being unlinked. If the unlink being replayed was issued on a file
created during ∆M , then all the Symbolic Log Replay algorithm must do is to remove the
entry previously added to Dir (during the replay of the create operation). On the other

48

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

Algorithm 3: Method Link M (∆M Replay)
Input: entry, lpi, lfi
Result: void

1 Dir← Dir ∪ {lpi→ (entry.fn, lfi, global)}
2 DirtyDirs← DirtyDirs ∪ { lpi }
3 if (entry.fi, _) ∈M2S then
4 nlinks← NLink[lfi]
5 NLink[lfi]← nlinks + 1
6 else
7 NLink← NLink ∪ { lfi→ entry.nl }
8 end

hand, if the file originates in the transaction’s Master Copy, then we must keep track of
this removal, in order to enable the algorithm to detect any conflict that may arise if this
file was used during the transaction’s execution. Keeping track of this kind of removals
is made by inserting an entry, referring to the removed file, in the REM set for posterior
use by the ∆S replay phase.

Algorithm 4: Method Unlink M (∆M Replay)
Input: entry, lpi, lfi
Result: void

1 if (entry.fi, i) ∈M2S then
2 Dir← Dir \ {lpi→ (entry.fn, lfi, global)}
3 nlinks← NLink[lfi]
4 NLink[lfi]← nlinks - 1
5 else
6 REM← REM ∪ {(entry.pi, entry.fn, lfi, global)}
7 NLink← NLink ∪ { lfi→ entry.nl }
8 end
9 DirtyDirs← DirtyDirs ∪ { lpi }

Besides the operations that modify the file system’s structure, ∆M also contains Write
operations over files. These are the only operations over files that we keep. The reason
is simple: we do not need the reads issued during the time-frame ∆M represents, since
those were associated with transactions that have already committed and pose no danger
for the transaction now trying to commit.

In reality, we do not log only issued writes(2). A write operation, when processing
∆M , may be any operation that can be decomposed to a write (Table 4.2b), such as a
mmap(2) or a truncate(2). That aside, what is relevant from the ∆M replay’s point-
of-view is to determine if the file being written to was created during ∆M ’s replay. If so,
then there is no point replaying the write for two reasons: first, being a file created during
∆M ’s replay, there is no way possible for the current transaction to access this file, thus
never triggering any conflict; secondly, when reconciling the file system (which shall only
be explained in Section 4.6), all blocks from a file created during ∆M will be reconciled
when the file creation is reconciled. However, if the file being written to exists originally
on the transaction’s Master Copy, then there is the chance for a conflict, since it is possible

49

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

for the transaction to access the file during execution. That being said, the Symbolic Log
Replay algorithm needs to keep the access (in REM) to the given block interval, specified
by the entry being replayed, so it may be validated during ∆S replay.

Algorithm 5: Method Write M (∆M Replay)
Input: entry, lpi, lfi
Result: void

1 if (entry.fi, i) /∈M2S then
2 if entry.fi /∈ NLink then
3 NLink← NLink ∪ { lfi→ entry.nl }
4 end
5 Blocks← Blocks ∪ {(lpi, entry.nf, lfi, [entry.start, entry.end], global)}
6 end

4.5.5 Replaying ∆S

Once ∆M is fully replayed, the Symbolic Log Replay algorithm has enough information
about the current state of the TxSv in order to process the transaction’s ∆S. The algorithm
then proceeds to replay ∆S with the objective of assessing if there is a conflict between
any of the operations performed by the transaction and current state of the TxSv, now
represented by the sets presented in Table 4.1b and which have been populated during
∆M ’s replay.

Conflict detection relies on a set of checks highly dependent on the type of the opera-
tion performed, as summarized by Table 4.3. Each operation has a specific semantics and
some of them work on a different grain than others, which forces us to take a different
approach for each operation and dealing with them individually. For instance, the Create
operation works on a Directory Entry basis, along with the Link and Unlink operations.
This means they will trigger a conflict if their effects on a directory clash with some op-
eration replayed during ∆M replay. On the other hand, Read and Write work mainly on
the file’s block level, although both operations have strong ties to the directory entry they
operate on. We shall describe in greater detail how each operation is validated, since each
one presents some corner cases not easily described in a single table.

The Symbolic Log Replay algorithm processes ∆S in a similar fashion as it does for
∆M , handling each entry in ∆S one at a time (Algorithm 6). Nevertheless, ∆S will also
contain read operations both over files and directories, which ∆M did not. Keeping such
operations serves the purpose of detecting potential conflicts between what the trans-
action read during its execution, and what actually exists in the TxSv at the time of its
commit.

Replaying an operation from ∆S means we have to try to replay its effects on the sets
populated during ∆M ’s replay (Section 4.5.4). This is how we will detect conflicts or de-
clare an operation as valid according to the transactional semantics provided by TxBtrfs.
Besides conflict detection, which by itself makes the replay of ∆S not as straightforward
as ∆M ’s, replaying each operation also imposes an additional complexity when trying to

50

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

∆M

Create Link Unlink Write Truncate

∆S

Create × × — — —
Link × × × — —
Unlink X X × — —
Read Dir × × × — —
Read — — × × *
Write — — × — *
Truncate — — × * *

× = Conflict X = No Conflict — = Does not apply
* = Under Study

Table 4.3: Conflict Detection when ∆S operations are validated against ∆M ’s

Algorithm 6: Symbolic Log Replay algorithm’s second step: ∆S Replaying
1 forall the entry ∈ ∆S do
2 switch entry.op do
3 case Create
4 call Create S(entry) // Algorithm 7
5 case Unlink
6 call Unlink S(entry) // Algorithm 8
7 case Link
8 call Link S(entry) // Algorithm 9
9 case ReadDir

10 call ReadDir S(entry) // Algorithm 10
11 case Read
12 call Read S(entry) // Algorithm 11
13 case Write
14 call Write S(entry) // Algorithm 12
15 case Truncate
16 call Truncate S(entry) // Algorithm 13
17 endsw
18 endsw
19 end

maintain a certain degree of compatibility between the transactional semantics and what
is expected from executing a group of operations on a common file system.

Take Algorithm 7, where we present the conflict condition for a Create operation re-
played while processing ∆S. In this case we only manipulate the Dir set, checking if
(after ∆M ’s replay) exists any entry with the same name, and in the same parent direc-
tory, as the one we are trying to create. Since we only log operations that actually affected
the transaction’s snapshot, we can be assured that there is no clashing with an entry cre-
ated during ∆S replay, thus our attempt to locate a global entry (in line 1). Even if the
algorithm previously replayed an operation from ∆S that created a clashing entry, we
know that it must have been unlinked in the meantime. Following the same reasoning,
imagine that (by some reason) the algorithm is trying to replay the creation of a file that
existed in REM (assuming the same parent), having been removed during ∆M ’s replay.

51

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

This would mean that the file we are trying to create must have originated in the trans-
action’s Master Copy and removed during ∆M . However, if the transaction was able to
create a file with the same name, in the same parent, as a file that had originated in the
Master Copy and removed in ∆M , the only explanation possible is that the this same file
had been removed in ∆S some time prior to this create we are now replaying. There-
fore, those verifications should have been made during the unlink validation and are not
meant to be done during a create.

Algorithm 7: Method Create S (∆S Replay)
Input: entry
Result: Conflict ∨ Nothing, iff valid)

1 if entry.pi→ (entry.fn, _, global, _) ∈ Dir then
2 return Conflict
3 else
4 Dir← Dir ∪ { entry.pi→ (entry.fn, entry.fi, local, entry.nl) }
5 NLink← NLink ∪ { entry.fi→ 1 }
6 end

Replaying an Unlink operation does exactly what has just been discussed: it checks
REM for a record of a prior unlink of the file during ∆M , thus freeing any subsequent
Create of that task. If REM does contain an entry referring to the same file the unlink
operation refers to, then the operation from ∆S leaves the file system in the same state
as the one left by ∆M , thus we could assume no conflict would be triggered. However,
and as stated back in Table 4.3, we do assume a conflict in case of an Unlink-Unlink clash,
and this results from a tradeoff between what is could be expected from a common file
system — the unlink would have no impact whatsoever — and what is expected from a
transactional file system — the transaction’s unlink may have been based on a file system
state that considered the file as existent.

Algorithm 8: Method Unlink S (∆S Replay)
Input: entry
Result: Conflict ∨ Nothing, iff valid

1 if (entry.pi, entry.fn, entry.fi, global) ∈ REM then
2 return Conflict
3 else
4 if entry.pi→ (entry.fn, entry.fi, local, _) ∈ Dir then
5 Dir← Dir \ {entry.pi→ (entry.fn, entry.fi, local)}
6 nlinks← NLink[entry.fi]
7 NLink[entry.fi]← nlinks - 1
8 else
9 REM← REM ∪ { (entry.pi, entry.fn, entry.fi, local) }

10 NLink← NLink ∪ { entry.fi→ entry.nl }
11 end
12 end

Unlike a Create, which creates a new file by creating a new inode and associating a
name to it, a Link actually takes an existing file and associates a new name to it. This

52

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

means that replaying a Link (Algorithm 9) may trigger an additional conflict than replay-
ing a Create: if the source file, to which the new name should be associated, has been
removed during ∆M then we have a conflict. However, similarly to replaying a Create, a
conflict may also be triggered if the new name clashes with another name created during
∆M ’s replay.

Algorithm 9: Method Link S (∆S Replay)
Input: entry
Result: Conflict ∨ Nothing, iff valid

1 if (entry.pi1, entry.fn1, entry.fi1, global) ∈ REM then
2 // Removed during ∆M.
3 return Conflict
4 else if entry.pi2 → (entry.fn2, _, _, _) ∈ Dir then
5 // The destination file was created during ∆M
6 return Conflict
7 else
8 Dir← Dir ∪ {(entry.pi2, entry.fn2, entry.fi1, local) }
9 if (entry.fi1 ∈ NLink) then

10 nlinks← NLink[entry.fi1]
11 NLink[entry.fi1]← nlinks + 1
12 else
13 NLink← NLink ∪ { entry.fi1→ entry.nl }
14 end
15 end

All the operations we have just discussed fall in the category of operations that have
their conflicts detected on a directory entry basis. This basically means that we detect
whether one of these operations conflicts with some other operation from ∆M based on
a clash of names belonging to the same directory. However, they may also clash with
another operation that works on a coarser grain: the Read Dir (Algorithm 10). In reality, it
is the Read Dir that will clash with any Create, Link or Unlink that may happen in a given
directory during ∆M ’s replay. The coarser grain of this operation results from the fact
that we take it as being an atomic operation — i.e., once the process issues a readdir(3)
during its transaction, it is as if it read the whole directory — even though this may not
be expected from a POSIX file system, and should be considered for further development
as future work. In any case, assuming this atomic behavior, it becomes impossible to
assess whether the transaction read all the directory’s entries or just a few, and a conflict
is triggered because there is no way to detect an individual conflict on the directory entry
level (for instance, reading an entry that was removed during ∆M ’s replay).

Regarding conflict detection on operations over files, we consider the grain of access
on such operations to be the file’s block. The difference between replaying a Read opera-
tion and any other operation is that the read will conflict with any Write replayed during
∆M if, and only if, both operations access the same block(s). Nevertheless, replaying
both a Read (Algorithm 11) or a Write (Algorithm 12) will attempt to detect a conflict with
a removal of the file being read or written. In this case, a conflict will only be triggered

53

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.5. Transaction Validation/Conflict Detection

Algorithm 10: Method ReadDir S (∆S Replay)
Input: entry
Result: Conflict ∨ Nothing, iff valid

1 if entry.fi ∈ DirtyDirs then
2 /* Something was either created or removed from the directory

with inode entry.fi */
3 return Conflict
4 else if (entry.pi, entry.fn, entry.fi, global) ∈ REM then
5 // The directory was previously removed
6 return Conflict
7 end

if the file being accessed by either one of the operations originates on the transaction’s
Master Copy, and if it has been removed during ∆M ’s replay (i.e., if it belongs to REM). If
the file being read or written was created during ∆S, then no conflict should ever arise.

Algorithm 11: Method Read S (∆S Replay)
Input: entry
Result: Conflict ∨ Nothing, iff valid

1 // Validate Reads only against writes from ∆M
2 if (entry.pi, entry.fn, entry.fi, [s, e], global) ∈ Blocks : [s, e] ∩ [entry.start, entry.end] 6= ∅
3 ∨ (entry.pi, entry.fn, entry.fi, global) ∈ REM then
4 return Conflict
5 end

Algorithm 12: Method Write S (∆S Replay)
Input: entry
Result: Conflict ∨ Nothing, iff valid

1 if (entry.pi, entry.fn, entry.fi, global) ∈ REM then
2 return Conflict
3 else
4 if entry.fi /∈ NLink then
5 NLink← NLink ∪ { entry.fi→ entry.nl }
6 end
7 end

Currently we are not able to guarantee full detection of conflicts in case of a truncate(2).
This is both due to all the corner cases inherent to this operation when it comes to conflict
detection, as well as some technical issues regarding our implementation. Algorithm 13
describes how far we have gotten when detecting a conflict replayed on ∆S, although it
should be taken with a grain of salt, as we have defined the case common to most oper-
ations — when the file being truncated is removed during ∆M ’s replay — and a highly
pessimistic case, in which we conflict whenever there is a write operation over the file
during ∆M ’s replay.

Once the Symbolic Log Replay algorithm finishes validating the transaction’s ∆S,
we will now be able to decide what to do with the transaction: abort it, considering

54

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.6. Reconciliation & Commit

Algorithm 13: Method Truncate S (∆S Replay)
Input: entry
Result: Conflict ∨ Nothing, iff valid

1 if (entry.pi, entry.fn, entry.fi, global) ∈ REM then
2 return Conflict
3 else if (_, _, entry.fi, _, global) ∈ Blocks then
4 return Conflict
5 end

the commit as failed and discarding both the transaction and its private snapshot, or
proceed with the reconciliation phase, which will produce an unified file system state
consistent with all the operations that happened before the transaction started, with those
that happened while the transaction executed and with all the operations performed by
the transaction until it started its commit.

4.6 Reconciliation & Commit

After successfully validating the transactions ∆S against the TxSv’s ∆M , we can now use
the resulting sets from executing the Symbolic Log Replay algorithm in order to reconcile
the transaction’s private snapshot (Ts) with the TxSv. This reconciliation will produce an
unified state (TxSvU), which shall become the new TxSv when the transaction finishes
its commit process (TxSv′), as illustrated in Figure 4.5.

TxSv T

Reconciliation

TxSv

SLR
sets S

Commit

TxSv'

U

Figure 4.5: Reconciliation
& Commit Process

Unlike typical transactional file systems, which apply
the transaction’s changes directly onto the file system, TxB-
trfs does just the opposite: it applies the operations executed
on the file system (i.e., the TxSv) during the transaction’s
execution into the transaction’s private snapshot, and then
makes this one the main copy. This approach appears to be
far from usual, and up to now we have not found any work
on file systems using a similar approach.

However, one can relate this reconciliation method with
what is used by revision control software such as Subver-
sion (SVN) [Apa]. In SVN, a local copy is made from the
master repository, stored and modified locally; once it is de-
cided to commit the local changes, one of two scenarios may
come up: a) the master repository was changed in the mean-
while, and it is necessary to obtain those changes, validate
them and reconcile them with the local copy before commit-
ting them into the master; or b) there was no change in the
master and it is possible to freely commit the changes. This
behavior guarantees the master isn’t left in an inconsistent
state after a local copy is committed, in case of a conflict between modifications.

55

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.6. Reconciliation & Commit

Transposing this behavior to TxBtrfs is quite straightforward, as long as we assume
the concept of master repository as being a pointer to the most recent stable file system state.
If this assumption was valid on SVN, once the local copy was validated and reconciled
with the master repository, then the local copy would become the new master repository.
Although this model would clash with the centralized nature of SVN, it fits just perfectly
in TxBtrfs.

In TxBtrfs we keep both the TxSv and the transaction’s snapshot (TS) in the same,
local, Btrfs volume, and the snapshot follows a Copy-on-Write behavior, which avoids un-
necessary waste of storage by shared files. This gives us some flexibility when reconciling
the TxSv and the TS , since we only have to manipulate the internal file system structures
in order to make, for instance, TS contain a file created on the TxSv. However, if the
TxSv had suffered no change whatsoever, and no reconciliation was required, all TxBtrfs
would need to do to commit the transaction would be to state “The new TxSv is TS”,
which can be seen as changing a pointer from TxSv to TS

6.
By taking this approach, using a pull model — i.e., applying the modifications made on

TxSv, which are unknown to the transaction, onto the transaction’s private snapshot —
instead of directly modifying the TxSv, we are able to easily guarantee all of the ACID
properties we proposed ourselves to provide in TxBtrfs, while still allowing concurrency
during the whole commit process (i.e., validation/conflict detection, reconciliation and,
finally, the commit).

4.6.1 Providing ACID

We discussed the ACID properties back in Section 2.4.1, but we never clarified how we
would guarantee them in TxBtrfs. By now we have detailed quite enough about TxBtrfs
in order to explain how this set of properties are guaranteed.

Let us begin with Durability, which should enforce that, after a transaction success-
fully commits, a transaction’s effects are durably kept on stable storage. In Section 4.2.1
we explained that each transaction is associated with a private snapshot of TxSv. This
snapshot is safely kept on disk, from the moment the transaction starts up to the moment
it commits. Each operation performed is kept in the transaction’s snapshot in a durable
manner as the one provided by Btrfs. If the transaction in given the green light to commit,
its snapshot will become the new TxSv, becoming now available as being part of the file
system, yet without compromising its durability.

The Isolation property is guaranteed from the moment the transaction starts and all
its accesses are mapped onto its own private snapshot. From the transaction’s perspec-
tive, there is no one else modifying the file system, simply because that is exactly what
is happening: nobody else, outside the transaction, modifies the transaction’s private
snapshot. Analogously, since the transaction is directly mapped onto its private snap-
shot, the transaction is unable to perceive any modifications either on TxSv or on other

6In reality, this process is a little more complicated than simply assigning a pointer, since it requires
modifying internal file system structures in multiple disk locations.

56

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.6. Reconciliation & Commit

transactions (although it may perceive any modification outside the transactional scope
of TxBtrfs).

Guarantees for these two properties are assured by capabilities explained already ex-
plained previously in this document. However, the remaining two properties — Atomic-
ity and Consistency — haven’t been directly detailed, albeit the path for their explanation
has been laid.

Take the Consistency property, which must assure the file system always transitions
between consistent states. In a nutshell, this means that every transaction should be able
to see all the modifications previously made by a successfully committed transaction, but
should not be allowed to commit operations that depend on non-committed operations
and data. Mapping transactions onto their private snapshots and reconciling them with
the TxSv with a pull model, allows us to never actually change the current TxSv. Instead,
all the modifications that should be replayed in order to obtain a reconciled state will be
applied onto the transaction’s private snapshot. If by any chance any of them fails, or
if the system fails abruptly during the reconciliation process, no harm was done to the
TxSv. This method therefore guarantees that in case of an unexpected problem, the TxSv
will be kept in its initial state, and nowhere in-between its initial state and the state in
which the transaction is fully reconciled and committed. Nevertheless, guaranteeing the
Consistency property not only depends on how we deal with unexpected problems during
the reconciliation, but also on how we deal with them while committing the reconciled
state (i.e., defining the snapshot as the new TxSv). Therefore, once a transaction T finishes
reconciling with the TxSv, TxBtrfs will guarantee that no other transaction starts until
T finishes committing. Also, before changing the pointer from TxSv to T ’s snapshot,
TxBtrfs will store enough on-disk informations to choose the correct file system state
(either TxSv’s or the T ’s snapshot) during the next mount, in case a problem occurs (such
a system failure) while changing the file system’s internal data structures.

Finally, TxBtrfs is able to guarantee Atomicity by taking advantage of all the capa-
bilities already described. One of the pillars of this work is to provide atomicity to any
application using TxBtrfs, guaranteeing that either all of its operations are successful and
successfully applied on disk, or none are. Considering the method used to commit a
transaction, just described in the context of Consistency, we are able to provide the Atom-
icity property just by making sure that no other transaction will start or commit while we
are changing the pointer from TxSv to T ’s snapshot: i) Any transaction already executing
will keep on executing on their private snapshots; ii) one transaction commits at a time,
thus only when T finishes will any other transaction start its commit (and, by then, will
validate and reconcile itself with the modifications made by T); and, iii) Any transaction
attempting to start, thus creating a snapshot of the TxSv, will have to wait for the pointer
to be changed to T ’s snapshot and will then start off from the new TxSv — as if all of T ’s
operations happened in the same single moment in time.

57

4. TXBTRFS — A TRANSACTIONAL FILE SYSTEM BASED ON BTRFS 4.6. Reconciliation & Commit

58

5
Evaluation

5.1 Introduction

Defining how to evaluate TxBtrfs was a challenge right from the moment we started
this work. Unlike most file systems, TxBtrfs provides transactional semantics; unlike
databases, TxBtrfs is a file system with a POSIX interface and available as a Linux Kernel
module. Due to this mixed paradigm we easily lose our chances of taking a one-size-
fits-all kind of evaluation: we cannot simply test file system performance and POSIX
compliance, as one would for a common file system; and we certainly cannot use an
accepted database benchmark to evaluate our transactional semantics, conflict detection
and reconciliation.

Due to our limited time timeframe, we decided to keep it simple and divide our eval-
uation into three different components: POSIX compliance, correctness of transactional
semantics, and overhead introduced by TxBtrfs’s additional features. Our implementa-
tion was evaluated on a system running Debian Linux 6.0, using an Intel dual-core i5 650
at 3.20 GHz processor, 4GB of RAM and with a Samsung P80 SD SATA hard disk.

5.2 POSIX Compliance

Among many specifications, the POSIX standard defines the interface and behavior of
I/O calls. Linux vastly supports POSIX regarding I/O, albeit Linux not being fully POSIX
compliant.

While designing TxBtrfs, we purposely kept it as POSIX compliant as Btrfs, by keep-
ing our transactional support separated from the file system I/O interface. We did not
changed any of the file system’s I/O calls in a perceivable way for the application, and

59

5. EVALUATION 5.3. Implementation Evaluation

any operation issued by the application during its execution will keep its expected behav-
ior and return status. The only visible difference between TxBtrfs and other file systems
is that an application may execute its operations in a transaction, by issuing file system
specific IOCTL calls (TxStart and TxCommit), but, even then, all operations executed
in a transaction will maintain its POSIX compliance up until commit.

We evaluated TxBtrfs’s POSIX compliance by running the pjd-fstests POSIX Test Suite[Tux]
inside a single transaction, and identifying which tests failed. Of all the 1957 tests ran by
the suite only one failed, regarding the creation time of a file when a truncate(2) is
issued with the purpose of increasing the file’s size. This very same test fails when ran on
Btrfs’s version 0.19, which is the version we used as the code base to implement TxBtrfs.

It would be have been interesting if we had found a suite that could test the POSIX
compliance of the read(2) and write(2) calls (pjd-fstests does not), although we be-
lieve there is no reason for them not be compatible: we do not alter the behavior of the
operations when accessing the transaction’s snapshot. Nevertheless, we think that hav-
ing access to such a suite could allow us to (modify it and) test the POSIX compliance of
read(2)’s and write(2)’s when running multiple transactions.

5.3 Implementation Evaluation

TxBtrfs introduces a large amount of instructions to Btrfs, summing up to over nine thou-
sand new lines of code. These are the support for all we described during this document,
but are mostly regarding snapshot creation on transaction start, operation logging dur-
ing a transaction execution and the transaction’s commit process (conflict detection and
reconciliation). Therefore, our evaluation is not focused on assessing if we introduce
overhead over a vanilla version of Btrfs, but on how much and why.

Given the components of TxBtrfs, in the course of this section we will produce two
kinds of analysis: a broader assessment on the overhead imposed over Btrfs when ac-
cessing the file system, and an evaluation on the impact of the reconciliation process on
the file system’s performance. All the results presented are the average of (at least) five
runs of each test, minus both the best and the worst results.

5.3.1 Throughput

We used the IOzone benchmark [IOz] to assess the throughput of TxBtrfs and to measure
how it behaves against Btrfs. The benchmark was parametrized in the same way for
both file systems, and between each test we made sure the VFS’s page cache would be
freed. We executed both read-only and write-only workloads, using files of 8 MB, 256 MB
and 4 GB, with the intent to represent a rather large range of file sizes and to identify
changes of behavior when using record sizes of 4 KB, 1 MB and 4 MB. In order to test
TxBtrfs’s mechanisms, we ran IOzone in a single transaction, which imposes onto IOzone
the overhead resulting from logging the operations, as well as mapping the operations

60

5. EVALUATION 5.3. Implementation Evaluation

onto the transaction’s snapshots.

In Figure 5.1 we present the results of running IOzone with a read-only workload
over TxBtrfs, and it becomes clear that, except for small files and using a small record
size, the throughput is quite regular.

13 14 15 16 17 18 19 20 21 22 4

 16

 64

 256

 1024

 4096

 34000
 36000
 38000
 40000
 42000
 44000
 46000
 48000
 50000
 52000

KB/s

TxBtrfs performance

Read performance

File size in 2^n KB

Record size in KB

KB/s

Figure 5.1: TxBtrfs’s Throughput for Read operations

When compared to a vanilla version of Btrfs (Figure 5.2), we can conclude the over-
head imposed by TxBtrfs is minimal, being quite close to Btrfs. We do have, however, an
anomaly which was verified in almost all runs we made, making TxBtrfs considerably
faster than Btrfs when reading small files using small record sizes. Since these results
refer to 8 MB files, which curiously enough is exactly the size of our disk’s buffer mem-
ory size, we suppose this strange behavior results from some unforeseen cache affinity
created by TxBtrfs, which enables our implementation to leverage the disk’s cache.

13 14 15 16 17 18 19 20 21 22 4

 16

 64

 256

 1024

 4096

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1
 1.02

Reconciling Read Operations

Relative Performance

File size in 2^n KB

Record size in KB

Figure 5.2: TxBtrfs’s relative performance to Btrfs’s, for Read operations

While the read-only workload’s throughput had a maximum value of about 52 MB/s,

61

5. EVALUATION 5.3. Implementation Evaluation

when executing write-only workloads we obtained throughputs several orders of mag-
nitude higher, as shown in Figure 5.3. Unlike read operations, which will hang while
waiting for the data to be retrieved from disk, write operations may not necessarily block
while waiting for the data to reach disk. This is specially true in Btrfs, which caches
writes in order to optimize disk accesses, guaranteeing that (eventually) they will reach
their place in the disk. Our work simply inherits Btrfs’s behavior.

13 14 15 16 17 18 19 20 21 22 4

 16

 64

 256

 1024

 4096

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

KB/s

TxBtrfs performance

Write performance

File size in 2^n KB

Record size KB

KB/s

Figure 5.3: TxBtrfs’s Throughput for Write operations

However, when comparing our results with Btrfs’s, we verified some fluctuations we
are not yet able to explain. These fluctuations are presented in Figure 5.4, and although
our results are kept relatively near Btrfs’s performance, they also spike towards both
better and worst performance. These results should be further studied in order to assess
the causes of such incongruence.

13 14 15 16 17 18 19 20 21 22 4

 16

 64

 256

 1024

 4096

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

Reconciling Write Operations

Relative Performance

File size in 2^n KB

Record size KB

Figure 5.4: TxBtrfs’s relative performance to Btrfs’s, for Write operations

62

5. EVALUATION 5.4. Transactional Semantics Correctness

5.3.2 Conflict Detection and Reconciliation

In order to assess the minimal burden of conflict detection and reconciling a transaction
upon commit, we decided to force an empty transaction to commit after the IOzone’s
transaction committed, guaranteeing that both transactions shared the same generation.
Using the same testing scenarios used in Section 5.3.1, we implemented a simple applica-
tion that would create a thread responsible for running IOzone within a transaction, and
we made the application create a concurrent transaction. The application’s transaction
would share the same generation as the benchmark’s transaction, and we guaranteed
that it would only finish after benchmark’s transaction finished. This way we were able
to guarantee that the application’s transaction would be reconciled with the new TxSv’s
state. By keeping the time the benchmark started and finished, and how long it took un-
til the application was able to finish its transaction, we were able to obtain the time the
conflict detection and reconciliation took for each test ran.

We verified that the time taken by TxBtrfs to reconcile a transaction does not change
that much for the workloads used, regardless of the file and record size used. In fact, as
shown in both Figure 5.5a and Figure 5.5b, the burden of the reconciliation gets diluted
as the number of operations performed grows. The worst case, 25 milliseconds per op-
eration, happens during the read-only workload and while accessing an 8 MB file with a
4 MB record size, which translates in a rather low number of operations and an equiva-
lently small amount of execution time, therefore emphasizing the burden associated with
the reconciliation. In reality, this is also the worst case for the write-only workload, but
since this workload performs a lot more operations than the read-only workload, the im-
pact of reconciling isn’t as profound as it is in the read-only workload. For executions
over 4 GB files, the cost of reconciling is nearly null.

5.4 Transactional Semantics Correctness

We subjected TxBtrfs to Store Benchmark [SLL11, Pes11], a benchmark being developed by
the Transactional Systems Research Team (TrxSys) at Centro de Informática e Tecnologias
da Informação (CITI). This benchmark mimics a storehouse, where products are kept, and
within which three different entities are at work: Clients, which will select products and
order them; Workers responsible of obtaining the ordered products in order to sell them
to the Clients; and Suppliers, which will resupply the storehouse’s shelves.

More precisely, each entity will be one or more threads, executing operations over the
file system within the lines of the following model:

• Each product is a file.

• Each product is assigned a type.

• A predefined directory ProductType will keep all the existing product types.

• A predefined directory ProductWorldwill keep all the products available for sale.

63

5. EVALUATION 5.4. Transactional Semantics Correctness

13 14 15 16 17 18 19 20 21 22 4

 16

 64

 256

 1024

 4096

 0

 5

 10

 15

 20

 25

ms/op

Reconciliation Time per Operation

Read Operations

File size in 2^n KB

Record size in KB

ms/op

(a) Read-Only workloads

13 14 15 16 17 18 19 20 21 22 4

 16

 64

 256

 1024

 4096

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

ms/op

Reconciliation Time per Operation

Write Operations

File size in 2^n KB

Record size KB

ms/op

(b) Write-Only workloads

Figure 5.5: Reconciliation Time (ms) Per Operation

• Within ProductWorld there will be a directory for each existing product type.

• Each available product will be kept in the directory according to its type, inside the
ProductWorld directory.

• Multiple instances of a same product (i.e., two boxes of cereals) within the ProductWorld
will be assigned different identifiers.

The model’s objective is to allow Client threads to order products, Worker threads to
process those orders, and Supplier threads to resupply the ProductWorld. In a nut-
shell, Clients will lookup the ProductWorld and select random products, each lookup
performing a readdir(3) without removing the product. Worker threads will then
process the Client’s order, by removing the requested products from the ProductWorld
(i.e., unlink(2)) after verifying those products are available. Finally, a Supplier will
copy or link random amounts of random products from the ProductType directory

64

5. EVALUATION 5.4. Transactional Semantics Correctness

onto the ProductWorld.
In order to verify the correctness of the transactional semantics offered by the file

system, upon completion the benchmark checks the file system’s state enforcing the fol-
lowing consistency constraint:

(InitialPopulation+TotalProductsSupplied)−TotalProductsSold = TotalRemaingProducts

Where InitialPopulation stands for the amount of products initially created in the file
system, TotalProductsSupplied being the amount of products the Suppliers added to the
ProductWorld, TotalProductsSold being the amount of products successfully ordered by
Clients and sold by Workers, and TotalRemainingProducts the final amount of products
existing in the file system when the constraint is enforced.

According to this benchmark, TxBtrfs successfully guarantees the expected file sys-
tem consistency.

65

5. EVALUATION 5.4. Transactional Semantics Correctness

66

6
Conclusion

6.1 Summary

This work has the purpose of providing to applications the possibility of using trans-
actional semantics when accessing the file system, allowing them to take advantage of
the ACID properties directly embedded on the file system; these properties could also
be found in Database Management Systems, but using them would imply a significant
change in paradigm when performing I/O, which in the file system is kept as POSIX.

To provide the application’s with this transactional semantics without forcing them
to be dependent of external software, we focused our on extending a Linux Kernel file
system, and we opted on using Btrfs as our code base. When we decided to extend Btrfs,
we did so due to its native support for Snapshots, which we used as the basis to imple-
ment and support transactions within the file system, in order to keep the transaction’s
modifications isolated from the remaining file system.

The result of our work, TxBtrfs, provides transactional support to applications by
means of explicit creation and finalization of transactions, to which are guaranteed the
ACID properties — Atomicity, Consistency, Isolation and Durability — while imposing
a negligible overhead compared to Btrfs. This claim is supported by our results regard-
ing TxBtrfs’s performance compared to Btrfs’s, when executing the IOzone file system
benchmark [IOz] within a transaction. Also, our measurements indicate that when us-
ing TxBtrfs for a large volume of disk operations, the overhead generated by detecting
conflicts between transactions and reconciling them is practically null. We also partially
validated the transactional semantics, using the Store Benchmark [SLL11, Pes11], and TxB-
trfs was able to meet the consistency constraints imposed by the benchmark.

67

6. CONCLUSION

6.2 Future Work

There is quite a lot of work yet to be done in TxBtrfs. During the course of this disser-
tation, we created the necessary base to continue the work over our file system, and to
push forward where we could not do it ourselves during the available timeframe. As
future reference, we can pinpoint several issues that should be worked on, so TxBtrfs can
achieve its full potential as a transactional file system.

If we had the time, we would have tackled the implementation regarding the follow-
ing technical issues:

• Minimization the heavy memory dependence throughout the implementation, namely
when mapping a process’s operations into the process’s transaction’s snapshot, as
well as when it comes to processing the transaction’s operations log during Conflict
Detection.

• Purging null operations (i.e., operations whose effects were nullified by a subse-
quent operation) from the transaction’s operations log, which not only would re-
duce the memory footprint, but also the processor usage during the transaction’s
Conflict Detection and Reconciliation.

• Support for a TxAbort operation, responsible for finishing a transaction and re-
moving its snapshot both from disk and memory, as if it never existed.

• Removal of past copies of the Transactional Subvolume (TxSv) that are no longer
required to validate any running transaction. These copies are kept to build the
∆M (see Section 4.5.1), but once they are not required they should be purged from
disk and memory in order to free resources.

Further study should also be made regarding the following subjects:

• Analysis on the truncate(2) and fallocate(2) operations’s behavior, in order
to support them when detecting conflicts and reconciling.

• Clearer definition of all the potential corner cases when providing file system oper-
ations with transactional semantics, taking into account their expected behaviors.

• Further validation of the defined transactional semantics through testing.

• Assessment of the requirements and implications on providing non-transactional
accesses to the Transactional Subvolume.

• Support, and definition of the expected behavior, for conflict detection and recon-
ciliation regarding file and directory metadata, such as attributes.

• How to deal with non-transactional accesses to the TxSv.

68

Bibliography

[ALS06] Kunal Agrawal, Charles E. Leiserson, e Jim Sukha. Memory models for
open-nested transactions. In Proceedings of the 2006 workshop on Memory sys-
tem performance and correctness, MSPC ’06, pág. 70–81, New York, NY, USA,
2006. ACM.

[Ame92] American National Standard for Information Systems — Database Lan-
guage — SQL. ANSI X3.135-1992, November 1992.

[Apa] Apache Software Foundation. Apache Subversion. http://subversion.
apache.org, last checked on 17 September 2011.

[App] Apple Inc. Mac OS X Time Machine. http://www.apple.com/macosx/
what-is-macosx/time-machine.html, last checked on 25 January
2011.

[BAH+] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, e M. Shellenbaum. The
zettabyte file system. Relatório técnico, Sun Microsystems.

[BBG+95] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, e
Patrick O’Neil. A critique of ansi sql isolation levels. In Proceedings of the
1995 ACM SIGMOD international conference on Management of data, SIGMOD
’95, pág. 1–10, New York, NY, USA, 1995. ACM.

[BBMT72] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, e Raymond S. Tom-
linson. Tenex, a paged time sharing system for the pdp - 10. Commun. ACM,
15(3):135–143, 1972.

[BP98] S. Balasubramaniam e Benjamin C. Pierce. What is a file synchronizer? In
4th Annual ACM/IEEE International Conference on Mobile Computing and Net-
working (MOBICOM’98), 1998.

69

http://subversion.apache.org
http://subversion.apache.org
http://www.apple.com/macosx/what-is-macosx/time-machine.html
http://www.apple.com/macosx/what-is-macosx/time-machine.html

BIBLIOGRAPHY

[Cac05] João Cachopo. Versioned boxes as the basis for memory transactions. In
Proceedings of Synchronization and Concurrency in Object-Oriented Languages
Workshop, Outubro 2005.

[Cod09] E. F. Codd. Derivability, redundancy and consistency of relations stored in
large data banks. SIGMOD Rec., 38:17–36, June 2009.

[Cun07] Gonçalo Cunha. Consistent state software transactional memory. Tese de
Mestrado, Universidade Nova de Lisboa, November 2007.

[DSS06] Dave Dice, Ori Shalev, e Nir Shavit. Transactional locking ii. In Distributed
Computing, volume 4167, pág. 194–208. Springer Berlin / Heidelberg, Octo-
ber 2006.

[Fed] Fedora Project. System rollback with btrfs. http://fedoraproject.

org/wiki/Features/SystemRollbackWithBtrfs, last checked on 19
September 2011.

[FUS] FUSE Project. File System in User Space – FUSE. http://fuse.

sourceforge.net/, last checked on 17 September 2011.

[GNS88] David K. Gifford, Roger M. Needham, e Michael D. Schroeder. The cedar
file system. Commun. ACM, 31(3):288–298, 1988.

[Hip] D. Richard Hipp. SQLite software library. http://sqlite.org/, last
checked on 25 January 2011.

[HLM94] Dave Hitz, James Lau, e Michael Malcolm. File system design for an nfs file
server appliance, 1994.

[Inf] Knowledge Quest Infotech. ZFS-Linux on Github.com. https://github.
com/zfs-linux, last checked on 25 January 2011.

[Int] Interop Systems Inc. SUA Community for Interix SUA & SFU. http://

www.suacommunity.com/SUA.aspx, last checked on 17 September 2011.

[IOz] IOzone. IOzone File System Benchmark Home Page. http://www.

iozone.org/, last checked on 29 January 2011.

[Iva] Ivan Smith. Nova Scotia’s Electric Gleaner. Cost of hard drive storage
space. http://ns1758.ca/winch/winchest.html, last checked on 21
January 2011.

[KS93] Puneet Kumar e M. Satyanarayanan. Log-based directory resolution in the
coda file system. In Proceedings of the Second International Conference on Parallel
and Distributed Information Systems, pág. 202–213, 1993.

70

http://fedoraproject.org/wiki/Features/SystemRollbackWithBtrfs
http://fedoraproject.org/wiki/Features/SystemRollbackWithBtrfs
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://sqlite.org/
https://github.com/zfs-linux
https://github.com/zfs-linux
http://www.suacommunity.com/SUA.aspx
http://www.suacommunity.com/SUA.aspx
http://www.iozone.org/
http://www.iozone.org/
http://ns1758.ca/winch/winchest.html

BIBLIOGRAPHY

[Lew91] Donald Lewine. POSIX Programmer’s Guide. O’Reilly & Associates Inc.,
April 1991.

[LLL11] João Eduardo Luís, João M. Lourenço, e Paulo A. Lopes. Suporte transac-
cional para o sistema de ficheiros btrfs. In INFORUM 2011, 2011.

[Lom77] D. B. Lomet. Process structuring, synchronization, and recovery using
atomic actions. SIGPLAN Not., 12:128–137, March 1977.

[LR07] James R. Laurus e Ravi Rajwar. Transactional Memory. Morgan & Claypool
Publishers, first edition, 2007.

[Luí09] Nuno Lopes Luís. Sistema de Ficheiros Transaccional sobre FUSE. Tese de
Mestrado, Universidade Nova de Lisboa, 2009.

[Mac07] Garrels Machtelt. Introduction to Linux. Fultus Corporation, 2nd edition,
2007.

[Mai] Community Maintained. Btrfs wiki at kernel.org. https://btrfs.wiki.
kernel.org/, last modification on 11 January 2011.

[Mar08] Artur Martins. Transactional Filesystems. Tese de Mestrado, Universidade
Nova de Lisboa, 2008.

[MG99] Marshall McKusick e Gregory Ganger. Soft updates: A technique for elim-
inating most synchronous writes in the fast filesystem. In Proceedings of the
Freenix Track: 1999 USENIX Annual Technical Conference, pág. 1–17, 1999.

[Mica] Microsoft. FAT File System. http://technet.microsoft.com/en-us/
library/cc938438.aspx, last checked on 27 January 2011.

[Micb] Microsoft. How Volume Shadow Copy Service Works: Data Recovery.
http://technet.microsoft.com/en-us/library/cc785914(WS.

10).aspx, last checked on 25 January 2011.

[MMS00] Jim Mauro, Richard McDougall, e Sun Microsystems Press. Solaris(TM) In-
ternals (Vol 1). Prentice Hall, 2000.

[MTV02] Nick Murphy, Mark Tonkelowitz, e Mike Vernal. The design and implemen-
tation of the database file system, 2002.

[MvRT+90] S.J. Mullender, G. van Rossum, A.S. Tananbaum, R. van Renesse, e H. van
Staveren. Amoeba: a distributed operating system for the 1990s. Computer,
23(5):44 –53, Maio 1990.

[Nat] Nathan Rosenquist et al. rsnapshot, a remote filesystem snapshot utility,
based on rsync. http://rsnapshot.org/, last checked on 25 January
2011.

71

https://btrfs.wiki.kernel.org/
https://btrfs.wiki.kernel.org/
http://technet.microsoft.com/en-us/library/cc938438.aspx
http://technet.microsoft.com/en-us/library/cc938438.aspx
http://technet.microsoft.com/en-us/library/cc785914(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc785914(WS.10).aspx
http://rsnapshot.org/

BIBLIOGRAPHY

[OA93] Michael A. Olson e Michael A. The design and implementation of the inver-
sion file system, 1993.

[OBM99] Michael A. Olson, Keith Bostic, e Seltzer Margo. Berkeley DB. In USENIX
Annual Technical Conference Proceedings, Monterey, CA, June 1999. USENIX.

[PB05] Z. Peterson e R. Burns. Ext3cow: A time-shifting file system for regulatory
compliance. ACM Transactions on Storage, 1(2):190–212, 2005.

[Pes11] Vasco Pessanha. Verificação Prática de Anomalias em Programas de
Memória Transaccional. Tese de Mestrado, Universidade Nova de Lisboa,
2011.

[PHR+09] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander
Benn, e Emmett Witchel. Operating system transactions. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, SOSP ’09, pág.
161–176, New York, NY, USA, 2009. ACM.

[Res] Jim Handy . Semico Research. Flash Memory vs. HDD costs over the years.
http://www.storagesearch.com/semico-art1.html, last checked
on 21 January 2011.

[Ric] Ricardo Correia (creator), currently maintained by the community. ZFS on
Fuse. http://zfs-fuse.net/, last checked on 25 January 2011.

[Rob] Daniel Robbins. Advanced filesystem implementor’s guide, Part 2.
http://www.ibm.com/developerworks/library/l-fs2.html, last
checked on 24 January 2011.

[Rod08] Ohad Rodeh. B-trees, shadowing, and clones. Trans. Storage, 3(4):1–27, 2008.

[Roe52] Anne Roe. The Making of a Scientist. Dodd, Mead & Company, 1952.

[SFH+99] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C.
Veitch, Ross W. Carton, e Jacob Ofir. Deciding when to forget in the elephant
file system, 1999.

[SGG04] Abraham Silberschatz, Peter Baer Galvin, e Greg Gagne. Operating System
Concepts. John Wiley & Sons, 7th edition, 2004.

[SKS06] Abraham Silberschatz, Henry F. Korth, e S. Sudarshan. Database System Con-
cepts. International Edition. McGraw-Hill, 5th edition, 2006.

[SLL11] Daniel Santos, João Lourenço, e João Luís. Store Benchmark. Relatório
técnico, Transactional Systems Research Team, Centro de Informática e Tec-
nologias da Informação, Universidade Nova de Lisboa, 2011.

72

http://www.storagesearch.com/semico-art1.html
http://zfs-fuse.net/
http://www.ibm.com/developerworks/library/l-fs2.html

BIBLIOGRAPHY

[ST95] Nir Shavit e Dan Touitou. Software transactional memory. In PODC ’95:
Proceedings of the fourteenth annual ACM symposium on Principles of distributed
computing, pág. 204–213, New York, NY, USA, 1995. ACM.

[Tux] Tuxera. Posix test suite. http://www.tuxera.com/community/

posix-test-suite/, last checked on 17 June 2011.

[Way] Wayne Davison (maintainer). rsync. http://samba.anu.edu.au/

rsync/, last checked on 25 January 2011.

[Wik] Wikipedia. Versioning file systems. http://en.wikipedia.org/wiki/
Versioning_file_system, last checked on January 25 2011.

[WLS+85] Dan Walsh, Bob Lyon, Gary Sager, J.M. Chang, D. Goldberg, S. Kleiman,
T. Lyon, R. Sandberg, e P. Weiss. Overview of the sun network file system.
In USENIX Conference Proceedings, pág. 117–124, Dallas, TX, 1985. USENIX.

73

http://www.tuxera.com/community/posix-test-suite/
http://www.tuxera.com/community/posix-test-suite/
http://samba.anu.edu.au/rsync/
http://samba.anu.edu.au/rsync/
http://en.wikipedia.org/wiki/Versioning_file_system
http://en.wikipedia.org/wiki/Versioning_file_system

	Introduction
	The File System
	Objectives
	Why Btrfs
	Contributions of this Dissertation
	Publications
	Document Organization

	The File System
	Basic Concepts
	Files
	Directories
	Operations over Files and Directories

	File System Structure
	Virtual File System
	Data Allocation Methods
	Consistency Guarantees

	Historical Overview
	1960's – 1990's
	1990's – 2000's
	2000's – present
	Summary

	Transactional Semantics
	Transactions
	Bringing Transactional Semantics to the File System

	Btrfs — A New Generation File System for Linux
	Introduction
	Introduction to Btrfs
	Btrfs's Trees
	Roots Tree
	Extents Tree
	File System Tree
	Subvolumes and Snapshots

	Summary

	TxBtrfs — A Transactional File System Based on Btrfs
	Introduction
	TxBtrfs in a Nutshell
	Starting a Transaction
	Committing a Transaction

	Processes & Transactions
	Mapping Processes onto Snapshots

	Transaction Hierarchy
	Transaction Validation/Conflict Detection
	Operation Deltas
	Initial Validation/Conflict Detection Process
	Symbolic Log Replay
	Replaying M
	Replaying S

	Reconciliation & Commit
	Providing ACID

	Evaluation
	Introduction
	POSIX Compliance
	Implementation Evaluation
	Throughput
	Conflict Detection and Reconciliation

	Transactional Semantics Correctness

	Conclusion
	Summary
	Future Work

