
Practical Verification of High-Level Dataraces
in Transactional Memory Programs

Vasco Pessanha1

v.pessanha@fct.unl.pt
Ricardo J. Dias1

emailrjfd@di.fct.unl.pt
João M. Lourenço1

joao.lourenco@di.fct.unl.pt

Eitan Farchi2
farchi@il.ibm.com

Diogo Sousa1

dm.sousa@fct.unl.pt

1CITI and DI FCT Universidade Nova de Lisboa, Portugal
2IBM Haifa Research Laboratory, Haifa, Israel

ABSTRACT
In this paper we presentMoTH, a tool that uses static analy-
sis to enable the automatic verification of concurrency anoma-
lies in Transactional Memory Java programs. Currently
MoTH detects high-level dataraces and stale-value errors, but
it is extendable by plugging-in sensors, each sensor imple-
menting an anomaly detecting algorithm. We validate and
benchmarkMoTH by applying it to a set of well known con-
current buggy programs and by close comparison of the re-
sults with other similar tools. The results achieved so far
are very promising, yielding good accuracy while triggering
only a very limited number of false warnings.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.5 [Software Engineering]: Testing and De-
bugging—Diagnostics; D.1.3 [Programming Techniques]:
Concurrent Programming—Parallel Programming

General Terms
Algorithms, Experimentation, Languages, Reliability, Veri-
fication

Keywords
Static Analysis, Testing, Verification, Concurrency, Software
Transactional Memory

1. INTRODUCTION
Transactional Memory [10, 14] (TM) is an approach to

concurrent programming that applies the concept of trans-
action, widely known from the databases community, to the
management of data in memory. TM promises both, a more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PADTAD ’11, July 17, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0809-0/11/07 ...$10.00.

efficient usage of parallelism and a more powerful semantics
for constraining concurrency.

While TM may ease the development of concurrent pro-
grams and reduce the number of concurrency errors, its us-
age does not imply by itself the correctness of programs.
In lock-based programs, the absence or the wrong usage of
a synchronization mechanism to protect a critical region in
one thread, allows for invalid accesses from other threads,
causing a synchronization error (datarace). In the case of
TM, critical regions are encapsulated in transactions, and
the failure to do so appropriately may also trigger a syn-
chronization error [4,12]. This anomaly in TM is analogous
to the classical datarace anomaly, and is herein referred to
as low-level datarace.

A program that is free from low-level dataraces is guar-
anteed not to have corrupted data data structures, and the
values of all variables always correspond to a specific serial
execution of all synchronized (with locks or transactions)
code blocks. However, experience shows that in many pro-
grams this guarantee does not suffice to ensure a correct
execution and, although data is not corrupted, no assump-
tions can be made about its consistency.

Data consistency is violated when two synchronized blocks
have a non-synchronized (possibly empty) code block be-
tween them, and the programer intended to have those two
synchronized code blocks running atomically, but mistakenly
believed it was sufficient to ensure their individual atomicity.
This anomaly is often referred as a high-level datarace.

To illustrate this situation, consider the code fragment
present in Figure 1, showing a shared pair of variables that
should be accessed atomically. When a thread wants to
check the equality of the pair’s elements, it reads both el-
ements in separate synchronized blocks storing their values
in local variables, and then compares them. However, due
to interleaving with another thread running the method set-
Pair() between the executions of getX() and getY(), the value
of the pair could have changed. In this scenario the first
thread observes an inconsistent pair, composed by the old
value of x and the new value of y.

Besides the high-level dataraces, other high-level anoma-
lies can occur in a program, frequently called stale-values
errors or atomicity violations. A stale-value [5] is a variable
replica that no longer reflects the true value of that variable,
i.e., it is outdated.

s ynch ron i zed vo id getX () {
r e t u r n p a i r . x ;

}
s ynch ron i zed vo id getY () {

r e t u r n p a i r . y ;
}
s ynch ron i zed vo id s e t P a i r (i n t x , i n t y){

p a i r . x = x ;
p a i r . y = y ;

}
boolean checkEqua l (){

i n t x = getX () ;
i n t y = getY () ;
r e t u r n x == y ;

}

Figure 1: Example of a high-level datarace

Figure 2 illustrates a case of a stale-value anomaly. In
this example, a set of threads try to increment a shared
variable x. First, the value of the variable is read and stored
is the local variable tmp. Then, this value is incremented and
stored back in x. However, if between the two synchronized
code blocks another thread running the same code updates
the value of x, the two threads would update the variable to
the same value, resulting in an lost update.

For the sake of simplicity and unless stated otherwise, we
use the term datarace to refer to both high-level dataraces
and stale-value errors.

In this paper we present MoTH, a tool that uses static
analysis to automatically verify the existence of dataraces in
transactional memory Java programs. The tool is extensible
in that it supports different datarace detector algorithms
as plugins to the system. We call these plugins sensors.
All sensors detect dataraces over the same knowledge base,
made up by the sets of memory accesses occurring in the
atomic code blocks, extending the notion of views from [1].

We evaluate the precision of MoTH by running a series
of tests taken from relevant literature, and comparing our
results with those from other related works.

The contributions of this paper include an extension of
the notion of view consistency [1], to incorporate both a dis-
tinction between read and write accesses and a partial order
relation between accesses to the same variable; and an ex-
tensible infrastructure for static analysis of Java Bytecode
programs, together with the necessary plugins (sensors) to
detect high-level dataraces and stale-value errors in Trans-
actional Memory Java programs.

The remainder of this paper is organized as follows. We
describe the theoretical framework used in our tool in Sec-
tion 2. In Section 3 we discuss some of the main challenges
that were addressed when implementing the framework, fol-
lowed by the analysis of the effectiveness of MoTH in Sec-
tion 4. Finally, we discuss the related work in Section 5,
and the conclusions and future work in the last section.

2. THE MOTH TOOL
MoTH is a tool that statically analyzes the Bytecode of a

Java program and checks for the presence of dataraces (both
high-level dataraces and stale-value errors).

The tool workflow includes two main phases. First, it
perform a symbolic execution to compute a set of views cor-
responding to the set of transactions present in the program,

s ynch ron i zed vo id r ead () {
r e t u r n x ;

}
s ynch ron i zed vo id update (i n t v a l u e) {

x = va l u e ;
}
vo id i n c () {

i n t tmp = read () ;
//tmp can be outdated
update (tmp +1);

}

Figure 2: Example of a stale-value error

where each view reflects the memory accesses made within a
memory transaction. In the second phase, it uses the com-
puted views as input to the sensors, a set plugins that im-
plement different algorithms for the detection of high-level
dataraces, thus called High-Level Datarace Sensors. These
phases are further discussed in the following sections.

2.1 Extended Views
A view, as described by Artho et al. in [1], expresses

what variables are accessed inside a given synchronized code
block. Since we want to distinguish between read and write
accesses, we need to express the memory access operations
rather than just in the accessed variables. We then add
a partial order relation between all memory accesses to the
same variables, which is used later by the High-level Datarace
Sensors, as defined in Section 2.3. Since we are working in
an object-oriented paradigm, likewise [1], we generalize the
concept of shared variables to fields of object instances.

Let C be the set of classes used in a Java program, and
let F be the set of all fields of all classes in C. Moreover,
let Vars ⊆ C × F be the set of variables of that program,
represented by the composition of their main class’ name
and the field’s name.

Let A be the set of all read and write accesses to vari-
ables of Vars inside a synchronized block. Notice that, in
the specific context of TM programs, a synchronized block
corresponds to a transactional block. An access a ∈ A is
a triple (α,v,b) where α ∈ {r, w}, v ∈ Vars and b ∈ {◦, •}.
α represents the type of access (r-read or w-write), and v
represents the variable being accessed. b helps keeping a
use-define relation for each accessed variable in a transac-
tion. In a read access, b keeps information of whether the
value read will (•) or will not (◦) be latter overwritten in-
side this same block. On the other hand, in a write access,
b keeps the information of whether the written variable was
(•) or was not (◦) read before in this same block.

A View v ⊆ A of a synchronized block is a subset of A,
and includes all the variable accesses made inside that block.
The set of all views is denoted by Views.

Assuming that each view has an unique identifier that,
for the sake of simplicity, is not represented in this formal-
ization, we define the following function that returns the
synchronized block of a given view:

Γ : Views −→ SynchronizedBlock

The set of generated views V (t) of a thread t is the set of
views of each synchronized block executed by t:

v ∈ V (t)⇔ sb = Γ(v) ∧ executes(t, sb)

e ::= (expression)
x (variables)

| n (constant)
| e⊕ e (binary op)
| null (null value)

A ::= (assignments)
x := e (local)

| x := y.f (heap read)
| x.f := e (heap write)

S ::= (statements)
S ;S (sequence)

| A (assignment)
| proc(~x) (procedure call)
| if e thenS elseS (conditional)
| while e doS (loop)
| skip (skip)

Figure 3: Small imperative language syntax

Finally, since we want to distinguish read from write ac-
cesses, for each view we generate its Read View (Vr) and its
Write View (Vw). Therefore, for α ∈ {r, w}, we get:

Vα(t) , {(α, v, b)|(α, v, b) ∈ V (t)}

2.2 Symbolic Execution
We now present the symbolic execution rules that generate

the views of each thread. We defined a simple imperative
language where the syntax of each procedure is shown in
Figure 3. In this language, variables may be either integer
values, or memory pointers. We encode boolean values using
integer values 0 and 1 denoting false and true respectively.
We assume that variables point to objects that are already
allocated in the heap. We only create views for transactional
methods, and the memory allocation operation is not rele-
vant for this matter. In the scope of this section we assume
that each procedure corresponds to a transactional method,
and thus, we create a view for each procedure.

Figure 4 lists the operational symbolic execution rules of
each statement in the syntax of the language. The symbolic
execution of each procedure always starts with an empty
view. A view is a set of memory accesses, and thus, whenever
a read or write access is made to an object’s field, we need
to add that access to the current view.

The auxiliary function add, defined below and used in the
symbolic execution rules Heap Read and Heap Write,
adds an access of the form (α, v, γ) to the current view V,
allowing to compute the special use-define relation kept for
each memory access. This use-define relation is a key el-
ement in the definition of the Single Variable Sensor de-
scribed in Section 2.3.2.

Definition 1 (Add Access). Inserts a memory access
into the view V.

add : A× Views→ Views

add((α, v, γ),V) ,
V \ {(α, v, δ)} ∪ {(α, v, γ)} if (α, v, δ) ∈ V ∧ α = r ∧ γ 6= δ

V \ {(r, v, δ)} ∪ {(r, v, •)}
∪ {(α, v, •)} if (r, v, δ) ∈ V ∧ α = w

V ∪ {(α, v, γ)} otherwise

〈V, S〉 =⇒ 〈V ′〉

〈V, S1〉 =⇒ 〈V ′〉 〈V ′, S2〉 =⇒ 〈V ′′〉
〈V, S1;S2〉 =⇒ 〈V ′′〉

(Seq)

〈V, x := y〉 =⇒ 〈V〉
(Assign)

c = typeof(y) V ′ = add((r, (c, f), ◦),V)
〈V, x := y.f〉 =⇒ 〈V ′〉

(Heap Read)

c = typeof(x) V ′ = add((w, (c, f), ◦),V)
〈V, x.f := y〉 =⇒ 〈V ′〉

(Heap Write)

spec(proc) = Vp V ′ = mergep(Vp,V)
〈V, proc(~x)〉 =⇒ 〈V ′〉

(Proc Call)

〈V, S1〉 =⇒ 〈V ′〉 〈V, S2〉 =⇒ 〈V ′′〉
〈V, if e thenS1 elseS2〉 =⇒ 〈V ′ ∪ V ′′〉

(Conditional)

〈V, S〉 =⇒ 〈V ′〉
〈V,while e doS〉 =⇒ 〈V ∪ V ′〉

(Loop)

〈V, skip〉 =⇒ 〈V〉
(Skip)

Figure 4: Operational Symbolic Execution Rules

The first branch of this function denotes the case where
we want to add a read access of variable v with read state γ,
and already exists a read access for the same variable with
the opposite read state δ in the current view. In this case
we replace the existing read access with the new one.

The second branch of this function denotes the case where
we want to add a write access, and there is an existing read
access in the current view. In this case we always need to
update the existing read access state to •, which means that
its value was overwritten. We also need to add the write
access with a state • as well, meaning there was a read access
to the same variable in the current view previous to this
write.

The third branch denotes all the cases where the condi-
tions for the two first branches do not hold. In this cases we
just add the new access to the current view.

In the case of the Proc Call rule, we first analyze the
procedure being called and generate the corresponding view,
which is then merged into the current view. Given a proce-
dure identifier proc, the function spec retrieves its computed
view Vp. We then make use of function mergep to join the
result of view Vp and the current view V. We define the
function mergep as:

Definition 2 (Function Merge). Let Vp be the view
retrieved from the specification of a procedure proc. Function
mergep merges the view Vp with the caller method’s view V.

Please notice that all the write accesses in Vp are merged into
V before merging the first read access.

mergep : Views×Views→ Views

mergep(Vp,V) = V ′′ where

V ′ = merge({(w, v, γ) | (w, v, γ) ∈ Vp},V)
∧ V ′′ = merge({(r, v, γ) | (r, v, γ) ∈ Vp},V ′)

merge(Vp,V) ,
{
V if Vp = ∅
merge(Vp \ {a}, add(a,V)) if ∃a ∈ Vp

The function mergep inserts the accesses present in view
Vp one by one into the current view V. It first insert all the
write accesses and then the read accesses. It is important to
highlight that view Vp is computed independently from V,
the view of the calling context, making our symbolic execu-
tion more compositional. In rule Proc Call, after getting
view Vp from the callee, we merge the two views using the
mergep function.

We believe all the remaining symbolic execution rules are
self explanatory.

In the end of the symbolic execution we have computed
the common knowledge base, in the form of extended views,
that is used by the sensors for detecting multiple kinds of
dataraces.

2.3 Datarace Detection — HLDR Sensors
The detection of dataraces using MoTH is achieved by

adding plugins to the tool. Each plugin detects a specific
kind of dataraces, and we call HLDR sensors to those plu-
gins aiming at the detection of High-level Dataraces. The
set of conflicts detected by the Sensors are not necessarily
disjoint, since all these sets are merged before presented to
the user.

Each Sensor implements an algorithm aiming at detecting
one specific type of dataraces. These algorithms are com-
pletely independent from each other and can be executed in
parallel, improving considerably the efficiency of the tool.

So far, we have defined two types of Sensors that detect
the majority of dataraces found in the literature. However,
our tool is completely extensible: if a datarace is not de-
tected by our current plugins, a new Sensor targeting this
anomaly can be designed, implemented, and integrated into
MoTH as a plugin.

2.3.1 View Consistency Sensor
This first Sensor is intended to detect every datarace re-

lated to partial accesses to atomic sets of variables. If two
variables are accessed atomically by a thread t1, but another
thread t2 accesses them separately, then we have a high-level
datarace. The algorithm described below is an extension of
the view consistency concept described in [1], which incorpo-
rates a distinction between read and write memory accesses
and yields less false positives.

Maximal Views are the views that are not subsets of other
views of the same thread, and represent the set of variables
that should be accessed atomically. Therefore, partial ac-
cesses of these sets can generate a datarace. Similarly to the
view generation procedure, we also distinguish Read Maxi-
mal Views (Mr) from Write Maximal Views (Mw). There-
fore, for α ∈ {r, w}, we get:

vm ∈Mα(t)⇔ vm ∈ Vα(t) ∧ (∀v ∈ Vα(t) : vm ⊆ v ⇒ v = vm)

Given a set of views of a thread t, and another thread’s
maximal view vm, the read and write overlapping views of
t with vm are all non-empty intersections of views in V (t)
with vm. Therefore, for α ∈ {r, w}, we get:

overlapα(t, vm) , {vm ∩ v | (v ∈ Vα(t)) ∧ (vm ∩ v 6= ∅)}

A set of views of a thread t is read/write compatible with
a maximal view vm of another thread, if and only if ev-
ery read/write overlapping views of t with vm form a chain.
With this, for α ∈ {r, w}, we have:

compα(t, vm)⇔ ∀v1, v2 ∈ overlapα(t, vm) : v1 ⊆ v2 ∨ v2 ⊆ v1

Notice that, intentionally, nothing is said in the last two
definitions about whether vm is a read or write maximal
view, as they apply to both cases.

Finally, the concept of view consistency is defined as the
mutual compatibility of all threads. A thread can only have
views that are compatible with all maximal views of all other
threads. However, we exclude possible dataraces generated
exclusively by read accesses. Therefore, we define the fol-
lowing property that has to be verified in order to guarantee
the absence of this kind of dataraces:

Property 1 (View Safety).

∀t1 6= t2,mr ∈Mr(t1),mw ∈Mw(t1) :

compw(t2,mr)∧ compr(t2,mw)∧ compw(t2,mw)

If this property is not verified, then this sensor will yield a
warning identifying a high-level datarace occurrence.

Despite the fact that this algorithm detects the majority
of the dataraces presented in the literature, like the simpler
version of [1], it is neither sound nor complete, and may
yield both false positives and false negatives. Thus, it is
still possible to have programs with dataraces undetected
by this sensor, such as stale-value errors.

2.3.2 Single Variable Sensor
Even when extended with read and write accesses distinc-

tion, the concept of view consistency does not detect some
other kinds of anomalies, such as stale-value errors. There-
fore, in order to create a more complete and effective tool,
we complement this algorithm with others that fill this and
possibly other gaps.

As an example of a stale-value error, imagine that a thread
checks the value of a variable var ∈ Vars in a transaction t1
and then, based on that previously observed state, alters var
in a different transaction t2. The value of var could have
changed in between, generating a lost update.

This kind of dataraces, usually referred as atomicity vio-
lations or stale-values errors, were also addressed by earlier
approaches [2, 5, 7, 9, 15, 17, 18]. Our algorithm is based on
Teixeira’s RwW pattern [15].

A variable var ∈ Vars has a possible stale-value, if in a
given thread t it is read in a synchronized block (without
being overridden in that block), and is then written in an-
other subsequent synchronized block.

psv(var, t)⇔ ∃v1 6= v2 ∈ V (t) :

(r, var, ◦) ∈ v1 ∧ (w, var, δ) ∈ v2
where δ ∈ {◦, •}

If this is the case, then the value of the shared variable
can possibly escape from one synchronized block to another.

!"#$%&'()*%+%)
,-.'/0(')12032%4)

56&.%67')!-1')
86%9-&:&)

;:'<&)
86%9-&:&)

"'.=0()86%9-&:&)

>00.)

!"
#$
%&
'(

)#
)*

"&
'

;:'<)/06&:&.'67-)
>'6&02)

>:639');%2:%$9')
>'6&02)

!"!"!"

+%,,"-.#*'/#0%&1).%#' 2)3)&)-"'2"3"-.%#'

Figure 5: Datarace Detection Procedure

The partial order of the read and write accesses in a view, in-
troduced by the use-define relation based in the annotation
{◦, •}, allows to assume that the shared variable escaped the
first block, since it was not overwritten in that block.

A thread t writes in a variable var ∈ Vars if there is a
write access to that variable in a write view of that thread:

writes(var, t)⇔ ∃v ∈ Vw(t) : (w, var, δ) ∈ v
where δ ∈ {◦, •}

Two threads verify the partial safety property if the first
does not write in any variable that has a possible stale-value
in the second thread:

pSafe(t1, t2)⇔ ∀var ∈ Vars :

¬writes(var, t1) ∨ ¬psv(var, t2)

Finally, a given program is free of this type of dataraces if
and only if all its threads are safe between themselves, i.e.,
it verifies the following property:

Property 2 (Single Variable Safety).

∀t1 6= t2 : pSafe(t1, t2) ∧ pSafe(t2, t1)

3. IMPLEMENTATION
The algorithms presented in Section 2 were used to stat-

ically identify dataraces in transactional memory programs
written in Java.

We resorted to the Soot [13], one of the larger and more
mature analysis frameworks for Java Bytecode, to imple-
ment our own Java Bytecode analyzer. Soot is an open
source framework used for code optimizations, transforma-
tions and analysis. It analyzes the programs’ bytecode and
offers an intermediate language between Java source and
bytecode, called Jimple. Our tool uses the generated Jim-
ple code to collect all the useful information described in
Section 2.1.

During the implementation of our algorithm, we encoun-
tered some challenges when analyzing some classes, which
we discuss in the remainder of this Section.

Since we can not analyze native methods, we assume the
worst case scenario. Therefore, when we don’t have access
to a method’s body, we assume that it reads and writes in
all its parameters, and also reads and writes the object in
which it was called. This strategy may increase the num-
ber of false positives reported by the framework, but avoids
yielding false negatives.

Another challenge we had to face was related to the con-
cept of Dynamic Dispatch, i.e., the process of mapping a

method call to a specific sequence of code. Which code
should we analyze when a method is called in an object
that has an interface type, and can be initialized with more
than one class?

To address this issue, we start by looking to all initial-
ization statements, collecting every possible implementing
class for each variable. Then, for every variable v ∈ Vars
with multiple implementing classes, the view of a method
called in v is obtained as the union of views of that method
in all its implementing classes.

Finally, if we have no access to the method’s body nor
information about its implementing classes, we treat it as a
native method and assume that it reads and writes in all its
parameters and also in the object in which it was called.

The approaches just described always assume the worst
case scenario and may yield a large number of false posi-
tives. To minimize this effect, an annotation mechanism was
implemented. The annotation mechanism allows the user to
easily state in which parameters a method writes/reads, and
if it writes/reads the object instance where that method was
called. Therefore, when a method is assumed to be native,
MoTH automatically generates annotations for that method
assuming the worst case scenario. The user is then alerted
and allowed to revise the annotation, which will be consid-
ered in future runs of the tool.

Figure 5 illustrates the workflow just described. Firstly,
a program’s Java Bytecode is transformed to jimple code
by the Soot framework. We then analyze this code in or-
der to determine all implementing classes for each variable
(Instance Type Analysis), and compute the views of each
thread (Views Analysis). In this analysis, some method an-
notations are used to determine which read and write ac-
cesses are made in some specific methods (Method Analysis).
Moreover, some native methods are automatically annotated
in this process with the user’s consent. Finally, all the in-
formation is provided to the Sensors for anomaly detection.

4. EXPERIMENTAL VALIDATION
To validate our approach we run a series of tests taken

from the literature, already used in the past to illustrate
dataraces in concurrent programs and/or to validate other
related works. We had access to Teixeira’s tool [15], and
have implemented Artho’s algorithm [1] inMoTH (using static
analysis instead of the dynamic approach followed in [1]).
Since these two works are the basis for our work, we always
report on their results as well. From the empiric compar-
ison of all the results, we can have a deeper insight of the

pub l i c vo id swap () {
i n t oldX ;
atomic {

oldX = coord . x ;
coord . x = coord . y ;
coord . y = oldX ;

}
}
pub l i c vo id r e s e t (){

atomic {
coord . x = 0 ;

}// i n c o n s i s t e n t s t a t e (0 , y)
atomic {

coord . y = 0 ;
}

}

Figure 6: Code snippet for Coordinates test

relevance and added analysis precision introduced by our
approach in MoTH.

In Section 4.1, we present the set of tests used to bench-
mark MoTH, discussing in detail some of them. The results
of the benchmarking process are summarized in Section 4.2.
Finally, in Section 4.3, we discuss the limitations of our ap-
proach that motivate our future work.

4.1 Tests Description/Sources
The universe for the validation and benchmarking of our

approach was composed by 15 tests, all taken from the liter-
ature [1,2,3,15,17] except for the Allocate Vector test, which
was taken from the IBM concurrency benchmark reposi-
tory [11]. All the tests but this last one were also used in
the past to validate Teixeira’s approach, and are described
in detail in [15]. We discuss in detail two of these tests
that are representative of the set. We start by discussing
the Coordinates test, which includes a common error where
a global update is divided in two transactions. Then, we
present the Account test, which has a datarace with just
one single variable.

4.1.1 Coordinates Test
This test was adapted from [2] and is represented in Fig-

ure 6. In this test, the pair of coordinates coord.x and co-
ord.y is meant to always be accessed atomically. There are
two possible operations, swap() that exchanges the values
of both coordinates in a single transaction, and reset() that
mistakenly resets their values in two distinct transactions.

When a thread t1 runs swap() between the two atomic
blocks of the reset() method, which is being executed by an-
other thread t2, then it results in an inconsistent final state,
since both reset operations are made to the same coordi-
nate leaving the other intact, which was not the intended
behavior.

All the views of threads t1 and t2 are represented in Ta-
ble 1. Both write views of thread t2 ({x} and {y}) have
non-empty intersections with t1’s read and write maximal
view ({x, y}), and do not form a chain. Thus, the high-
level datarace is correctly detected by the View Consistency
Sensor, without generating false positives.

4.1.2 Account Test
This test was adapted from [17], and is presented in Fig-

ure 7. In this test, the balance of a bank account can be

Table 1: Coordinates Views

t1 (swap) t2 (reset)

Vr {x, y} -
Vw {x, y} {x}, {y}
Mr {x, y} -
Mw {x, y} {x}, {y}

i n t ba l ance ;
vo id update (i n t a) {

i n t tmp = read () ;
//tmp can have a o b s o l e t e v a l u e
sumTmp(tmp , a) ;

}
@Atomic
i n t r ead () {

r e t u r n ba l ance ;
}
@Atomic
p r i v a t e vo id sumTmp(i n t tmp , i n t a){

ba l ance = tmp + a ;
}

Figure 7: Code snippet for Account test

accessed and updated by more than one thread. The up-
date operation is composed by two atomic sub-operations,
read() and sumTmp(), that read and update the account’s
balance. However, between reading and updating the ac-
count’s balance, its value might have changed due to the
interleaving with another thread running the same code.

This situation could generate a lost update situation, rep-
resenting a datarace generated by accesses to a single vari-
able, thus not detectable with the concept of view consis-
tency. Our algorithm has successfully detected this datarace
with the Single Variable Sensor described Section in 2.3.2.

4.2 Results
According to the classification of soundness and complete-

ness by Flanagan et al. [8] and likewise Artho’s approach,
our approach is both unsound and incomplete, i.e., it can
yield both false positives and negatives. In a total of 15
dataraces present in these programs, 13 were correctly pointed
out (87% of total dataraces). Moreover, only 6 false positives
were yielded, all by the Single Variable Sensor.

The majority of the warnings raised by our tool corre-
spond to real (potential) conflicts that cannot occur in the
execution of this specific program, and could be excluded
with a may-happens-in-parallel analysis. As an example,
consider a thread that execute two atomic methods, one that
reads and another that writes the value of a variable var.
One could think that, if it first reads var in one transaction,
and then based on this result it updates var in a different
one, we would have a datarace occurrence. However, if the
thread always executes the write before the read operation,
its executions are datarace free. In this scenario, despite the
fact that these methods can generate a datarace, no warn-
ings should be yield since it does not occur in this specific
program execution.

Some other warnings could be excluded refer to dataraces
that are related to accesses made to different instances of
the same class. We are currently unable to distinguished

Table 2: Test results summary

Known False Negatives False Positives
Test Name Anomalies MoTH Artho [1] Teixeira [15] MoTH Artho [1] Teixeira [15]

Connection [3] 2 1 1 1 1 0 1

Coord03 [1] 1 0 0 0 0 0 3
Local [1] 1 0 1 0 0 0 1
NASA [1] 1 0 0 0 0 0 0

Coord04 [2] 1 0 0 0 0 0 3
Buffer [2] 0 0 0 0 1 0 7
DoubleCheck [2] 0 0 0 0 1 0 2

StringBuffer [7] 1 1 1 1 0 0 0

Account [17] 1 0 1 0 0 0 0
Jigsaw [17] 1 0 0 0 2 0 1
OverReporting [17] 0 0 0 0 1 0 2
UnderReporting [17] 1 0 1 0 0 0 0

Allocate Vector [11] 1 0 1 0 0 0 1

Knight [15] 1 0 1 0 0 0 2
Arithmetic Database [15] 3 0 3 1 0 0 0

Total 15 2 10 3 6 0 23

these different class instances and assume the accesses to be
on the same variable. In some cases this assumption could
be dropped with a points-to analysis.

The results of our validation/benchmarking procedure are
summarized in Table 2. Note that our approach detects a
series of dataraces generated by accesses to a single vari-
able, missed by Artho’s approach and reported as false neg-
atives in the Tabble, despite the few extra false positives
introduced by the corresponding sensor. Furthermore, we
have significantly reduced Teixeira’s number of false posi-
tives from 67% to only 26%.

4.3 Limitations of our Approach
Although partially discussed before, we identify below some

of the limitations of our approach, not always visible with
the set of tests used.

By assuming that all accesses to a field of objects of the
same class are made to the same object, i.e., there is no
distinction between multiple instances of the same class, we
can generate a considerably high number of false positives.
A points-to analysis will help tackling this issue.

Moreover, not knowing if there is a well defined execu-
tion ordering among methods, and thus assuming that ev-
ery method execution ordering is possible, including concur-
rent execution, will also yield some false positives. A may-
happens-in-parallel analysis will help tackling this issue.

Finally, since we are using static analysis, we are collecting
all the possible variable accesses in a given method, rather
than their real accesses in a program execution. Therefore,
in the presence of an if-then-else condition, we are merging
the accesses made in each distinct branch. This over conser-
vative approximation can also generate false positives, since
we are implicitly stating that the union of the accesses of
all branches have to be accessed atomically. Further inves-
tigation is clearly required, but we believe that more precise
static analysis techniques may help tackling this issue.

5. RELATED WORK
There are other works that try to address the issues dis-

cussed in this paper. Several of these works target the de-
tection of high-level dataraces in concurrent programs, both
static [3, 15, 16], dynamic [1, 18], and hybrid [6]. The de-
tection of stale-value errors is also largely covered in the
literature [2, 5, 7, 9, 15, 17, 18]. We will further discuss some
of these works due to their relevance or similarity to ours.

Undoubtedly, the work presented in [1] is the nearest to
our approach since it represents the base and motivation
to this work. The authors state that a high-level datarace
occurs when a set of related variables should be accessed
together, but there is some thread that does not access them
atomically. Despite the possibility of both false positives
and false negatives, this work has an interesting approach
analyzing the relations between variables rather than the
interactions between transactions.

The same authors present a data-flow-based technique to
detect stale-value errors in [2]. This algorithm makes no
strong assumptions and do not depend on annotations, and
was implemented using static analysis.

Praun and Gross [17] introduce the concept of method
consistency, an extension of view consistency distinguishing
reads and writes. Based on the intuition that the variables
that should be accessed atomically in a given method are
all the variables accessed inside a synchronized block, the
authors define the concept of method views that relates to
Artho’s maximal views. Similarly to our approach, their
tool points out all dataraces detected with the concept of
view consistency, while missing some others.

The concept of partial order between accesses to the same
variable, as introduced in this paper, allowsMoTH to detect
dataraces missed by the method consistency algorithm. One
example of this scenario occurs in the UnderReporting test.
Moreover, this information also allows us to exclude some of
the false positives yielded by method consistency algorithm.

However, it is still possible to find a datarace missed by
our tool that is detected by [17]. We expect to exclude
these cases by developing and plugging new Sensors to our
approach.

Wang and Stoller [18] use the concept of thread atomicity
to detect and prevent dataraces. Notice that this atomic-
ity has a different meaning than the one stated in the ACID
properties. Here, atomicity is related to the concept of trans-
action serialization which guarantees that all concurrent ex-
ecutions of a set of processes is equivalent to a sequential
execution of those processes.

An attempt to reduce the number of false positives yield
by [18] was made by Teixeira et al. [15]. Motivated by the
intuition that the majority of bugs come from two consec-
utive atomic segments in the same thread, which should
be merged into a single one, the authors detect dataraces
through the creation and detection of some anomalous ac-
cess patterns. Our work relates to this one since it also
identifies some dataraces caused by accesses to one single
variable, that would not be detected with if using only the
concept of View Consistency. The implementation of the
Sensor described in Section 2.3.2 is based on the RwW pat-
tern defined in this work.

Another approach that also detect the same dataraces
tackled by the Single Variable Sensor is described in [9],
where the authors present a type system that verifies the
atomicity of code blocks.

Beckman et al. [3] present an intra-procedural static anal-
ysis, formalized as a type system, using the concept of access
permissions to detect dataraces. Contrarily to our approach,
this work demands that the programmer explicitly declares
what are the invariants and the access permissions of the ob-
ject references of the program. Despite of this observation,
this work is still related to ours since it detects the same
kind of dataraces in transactional programs written in Java.

Another approach based on statical pattern matching is
the work of Vaziri et al. [16]. The authors create a new def-
inition of the concept of datarace, through the theoretical
assemblage of all possible anomalous access patterns, em-
bracing both low- and high-level dataraces. Since this ap-
proach is based on sets of variables that should be accessed
atomically, the user must explicitly declare which variables
are related. This work is related to ours since it also tries to
statically detect high-level dataraces, despite its incapacity
to automatically find out which variables are related.

Finally, Elmas et al. [6] have designed and implemented
a Java runtime system that monitors Java program execu-
tions, and throws a DataRaceException when a datarace is
about to occur. Their system supports multiple synchro-
nization idioms, allowing for example the combination of
transactions with blocks synchronized with locks.

6. CONCLUDING REMARKS
In this paper we presentMoTH, a practical and extensible

tool to detect dataraces in transactional memory programs.
MoTH is based in an extension of the formalism of view con-
sistency to include distinction between read and write ac-
cesses, together with a partial order relation between ac-
cesses to the same variable.

We also propose the design a extensible infrastructure that
is able to analyze Java Bytecode programs and build a basic
knowledge base, which is then used by Datarace Sensors that
detect specific dataraces in the program. Two Sensors were

designed, one based on the concept of view consistency, and
another in the RwW pattern described in [15].

Our approach was validated with a series of known tests
taken from the literature. The observed results were signif-
icantly better than the ones available up to now by those
referred in the related work.

The developed framework can be improved by adding new
analysis modules, namely may-happens-before and points-to
analysis, that would reduce the number of false positives
currently yielded.

Moreover, more Sensors could also be integrated intoMoTH

in order to detect dataraces that are not detected by the two
existing Sensors described in this paper. These new sensors
could exclude the false negatives currently yielded in the
validation of our approach.

Finally, the implemented static analysis could be com-
plemented with a dynamic analysis, which would probably
provide useful information that would improve the precision
of our tool.

Acknowledgments
This work was partially supported by Sun Microsystems un-
der the Sun Worldwide Marketing Loaner Agreement #11497,
by the Centro de Informática e Tecnologias da Informação
(CITI), and by the Fundação para a Ciência e Tecnologia
(FCT/MCTES) in the research projects PTDC/EIA/74325/
2006, PTDC/EIA-EIA/108963/2008, and PTDC/EIA-EIA/
113613/2009, and research grant SFRH/BD/41765/2007. We
would like to thank the anonymous reviewers for their con-
structive comments, and express our gratitude to our col-
league José Alferes for the diligent review of this paper and
for his valuable suggestions.

7. REFERENCES
[1] Cyrille Artho, Klaus Havelund, and Armin Biere.

High-level data races. Software Testing, Verification
and Reliability, 13(4):207–227, December 2003.

[2] Cyrille Artho, Klaus Havelund, and Armin Biere.
Using block-local atomicity to detect stale-value
concurrency errors. In Farn Wang, editor, ATVA,
volume 3299 of Lecture Notes in Computer Science,
pages 150–164. Springer, 2004.

[3] Nels E. Beckman, Kevin Bierhoff, and Jonathan
Aldrich. Verifying correct usage of atomic blocks and
typestate. SIGPLAN Not., 43(10):227–244, 2008.

[4] Colin Blundell, E. Christopher Lewis, and Milo M. K.
Martin. Deconstructing transactional semantics: The
subtleties of atomicity. In Fourth Annual Workshop on
Duplicating, Deconstructing, and Debunking, June
2005.

[5] Michael Burrows and K. Rustan M. Leino. Finding
stale-value errors in concurrent programs.
Concurrency and Computation: Practice and
Experience, 16(12):1161–1172, October 2004.

[6] Tayfun Elmas and S Qadeer. Goldilocks: a race and
transaction-aware java runtime. ACM SIGPLAN
Notices, pages 245–255, 2007.

[7] Cormac Flanagan and Stephen N Freund. Atomizer: a
dynamic atomicity checker for multithreaded
programs. In POPL ’04: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 256–267, New York,
NY, USA, 2004. ACM.

[8] Cormac Flanagan, K. Rustan M. Leino, Mark
Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. ACM
SIGPLAN Notices, 37(5):234, May 2002.

[9] Cormac Flanagan and Shaz Qadeer. Types for
atomicity. In TLDI ’03: Proceedings of the 2003 ACM
SIGPLAN international workshop on Types in
languages design and implementation, pages 1–12,
New York, NY, USA, 2003. ACM.

[10] Maurice Herlihy, Victor Luchangco, Mark Moir, and
III William N. Scherer. Software transactional
memory for dynamic-sized data structures. In PODC
’03: Proceedings of the twenty-second annual
symposium on Principles of distributed computing,
pages 92–101, New York, NY, USA, 2003. ACM.

[11] IBM’s Concurrency Testing Repository.

[12] Milo Martin, Colin Blundell, and E. Lewis. Subtleties
of transactional memory atomicity semantics. IEEE
Computer Architecture Letters, 5(2), 2006.

[13] Laurie Hendren Vijay Sundaresan Patrick Lam
Etienne Gagnon Raja Vallée-Rai and Phong Co. Soot
- a java optimization framework. In Proceedings of
CASCON 1999, pages 125–135, 1999.

[14] Nir Shavit and Dan Touitou. Software transactional
memory. In PODC ’95: Proceedings of the fourteenth
annual ACM symposium on Principles of distributed
computing, pages 204–213, New York, NY, USA, 1995.
ACM.

[15] Bruno Teixeira, João Lourenço, Eitan Farchi, Ricardo
Dias, and Diogo Sousa. Detection of transactional
memory anomalies using static analysis. In Proceedings
of the 8th Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging, PADTAD
’10, pages 26–36, New York, NY, USA, 2010. ACM.

[16] Mandana Vaziri, Frank Tip, and Julian Dolby.
Associating synchronization constraints with data in
an object-oriented language. ACM SIGPLAN Notices,
41(1):334–345, January 2006.

[17] Christoph von Praun and Thomas R. Gross. Static
detection of atomicity violations in object-oriented
programs. In Journal of Object Technology, page 2004,
2003.

[18] L Wang and S Stoller. Run-Time Analysis for
Atomicity. Electronic Notes in Theoretical Computer
Science, 89(2):191–209, October 2003.

