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Abstract. In this work, we propose RATS, a middleware to enhance
and extend the Terracotta framework for Java with the ability to trans-
parently execute multi-threaded Java applications to provide a single-
system image. It supports efficient scheduling of threads, according to
available resources, across several nodes in a Terracotta cluster, taking
advantage of the extra computational and memory resources available.
It also supports profiling to gather application characteristics such as
dispersion of thread workload, thread inter-arrival time and resource us-
age of the application. It uses bytecode instrumentations to profile and
add clustering capabilities to multi-threaded Java applications, as well
as extra synchronization if needed. We developed a range of alternative
scheduling heuristics and classify them based on the application and clus-
ter behavior. The middleware is tested with a cpu-intensive application
with varying thread characteristics to assess and classify the scheduling
heuristics with respect to application speed-ups and load balancing.

1 Introduction

If the workstations in a cluster can work collectively and provide the illusion
of being a single workstation with more resources, then we would have what is
referred in the literature as a Single System Image [3]. Much research has been
done in the area of SSIs, such as Distributed Shared Memory (DSM) systems
and Distributed Virtual Machines that can run applications written in a high-
level language in a cluster, behaving as if it were on a single machine. One of the
essential mechanisms necessary for providing SSI systems is the scheduling of
threads for load balancing across the cluster. The current most popular system
that uses a shared object space is Terracotta. At present it does not support
scheduling of threads and instead multiple manual instances needs to be launched
to scale applications. We propose RATS, a Resource Aware Thread Scheduling
for JVM level Clustering which is an extension of Caft [8]. Caft provides full
transparency for running multi-threaded applications. RATS bridges the gap
between transparency and efficient scheduling of threads using Terracotta to
keep data consistent across the cluster and scale existing applications with ease.

Several studies have showed that no single scheduling algorithm is efficient for
all kinds of applications. RATS supports multiple scheduling heuristics and they
behave differently for different characteristics of applications. These scheduling



heuristics are classified based on the properties of the application and can be used
efficiently to suite any class of application. RATS provides a profiler that allows
to characterize an application based on the dispersion of thread workload, thread
inter-arrival time and the resource usage of the application. The information
obtained from the profiler allows to opt for the most efficient thread scheduling
heuristic. The scheduling heuristics maintain state information of the worker
in the form of resource usage and threads launched to make optimal decisions.
RATS allows to run an already existing application in a distributed manner using
a scheduling heuristic that best suites the characteristics of the application and
the cluster.

The rest of the document is organized as follows. We provide a brief back-
ground of the most relevant related work followed by a description of the archi-
tecture and the supported scheduling heuristics along with the profiling abilities.
Finally we evaluate the scheduling heuristics for different class of applications
and cluster properties.

2 Related Work

There are three major approaches that exist for distributed execution in a cluster.
They are: Compiler-based Distributed Shared Memory systems, Cluster-aware
Virtual Machines and systems using standard Virtual Machines. Compiler-based
Distributed Shared Memory Systems (DSM) is a combination of a traditional
compiler with a Distributed Shared Memory system. The compilation process in-
serts instructions to provide support for clustering without modifying the source
code. Jackal [13] compiler generates an access check for every use of an object
field or array element and the source is directly compiled to Intel x86 assembly
instructions, giving the maximum performance of execution possible without a
JIT. Jackal does not support thread migration.

Cluster-aware Virtual Machines are virtual machines built with clustering
capabilities in order to provide a Single System Image (SSI). cJVM[2] is able to
distribute the threads in an application along with the objects without modifying
the source or byte code of an application. It also supports thread migration.
To synchronize the objects across the cluster a master copy is maintained and
updated upon every access and is a major bottleneck. In Kaffemik [1], all objects
are allocated in the same virtual memory address across the cluster thus allowing
a unique reference valid in every instance of the nodes. However, it does not
support caching or replication and can result in multiple memory accesses, thus
reducing performance.

Systems using Standard VMs are built on top of a DSM system to provide
a Single System Image for applications. Some of the most popular systems are
java party [14], java Symphony[5] and JOrchestra[12]. J-Orchestra uses byte-
code transformation to replace local method calls for remote method calls and
the object references are replaced by proxy references. Java Symphony allows
the programmer to explicitly control the locality of data and load balancing. All
the objects needs to be created and freed explicitly which defeats the advan-
tage of a built-in garbage collection in JVM. Java party allows to distinguish



invocations as remote and local by modifying the argument passing conventions.
The implementation does not satisfy the ideal SSI model as classes need to be
clustered explicitly by the programmer.

Some of the classic scheduling algorithms that are most relevant to thread
scheduling is explained in the following. In First Come First Served algorithm,
execution of jobs happen in the order they arrive ie. the job that arrives first is
executed first [7]. If a large job arrives early, all the other jobs arriving later are
stalled in the waiting queue until the large job completes execution. This affects
the response time and throughput considerably. This disadvantage is overcome
by Round Robin. In this algorithm algorithm every job is assigned a time interval,
called quantum, during which it is allowed to run [11]. Since jobs execute only
for a specified quantum, the problem of larger jobs stalling jobs that arrive later
is mitigated. The Minimum Execution Time (MET) algorithm assigns each task
to the resource that performs it with the minimum execution time [9]. MET does
not consider whether the resource is available or not at the time (ready time) [4,
9, 10] and can cause severe imbalance in load across resources [4, 9, 10]. The Min-
min algorithm has two phases [4]. In the first phase, the minimum completion
time of all the unassigned tasks are calculated [10]. In the second phase, the
task with the minimum completion time among the minimum completion time
that was calculated in the first phase is chosen. It is then removed from the task
list and assigned to the corresponding resource [4]. The process is repeated until
all the tasks are mapped to a resource. In the Suffrage algorithm the criteria
to assign a task to a resource is the following: assign a resource to a task that
would suffer the most if that resource was not assigned to it [7, 9]. In order to
measure the suffrage, the suffrage of a task is defined as the difference between
its second minimum completion time and its minimum completion time [6, 10].
These completion times are calculated considering all the resources [7]. Once a
task is assigned to a resource it is removed from the list of unassigned tasks and
the process is repeated until there are no tasks in the unassigned list.

3 Architecture

This section describes the architecture of the middleware, implemented to allow
Terracotta to schedule threads for simple multi-threaded java applications on a
cluster. RATS middleware consists of two components - A Master and Worker.
The master is responsible for running the application and launches threads re-
motely on the worker nodes. The worker exposes an interface for launching
threads and provides all the operations supported by java.Lang.Thread class.
The master, on the other hand is responsible for launching the application with
an executable jar and uses a custom class loader that loads the class after per-
forming necessary instrumentation to the application code. Figure 1 provides a
high level view of the RATS architecture.

RATS was implemented by modifying an existing middleware called CAFT
(Cluster Abstraction for Terracotta) [8]. CAFT provides basic support for remote
thread spawning along with transparency. RATS extends CAFT to enhance byte
code instrumentation along with support for multiple resource aware scheduling



Terracotta 
Server2

Terracotta 
Server1

RATS (Master)

Terracotta

JVM

RATS 
(Worker)

Terracotta

JVM

Terracotta 
Client (Master)

Terracotta 
Client (Worker)

Data

Data

Terracotta Cluster

Application 
(Launch)

Application 
(Code access)

Fig. 1. Architecture of RATS

Coordinator

Master Worker 1 Worker 2

1/Register
1/Register

2/GetNode

3/ReturnNode

4/LaunchThread

Terracotta Shared 
Object

Fig. 2. Master-Worker Communication

algortihms. To understand how the master worker paradigm allows for remotely
spawning threads, we first provide a high level architecture of the communica-
tion between master and worker and in the following subsection we explain the
different scheduling heuristics the system supports.

Figure 2 shows the communication between different components that are
required to remotely spawn a thread. As soon as the workers are launched, they
first register themselves with the coordinator (1/Register). The coordinator acts
as an interface between the worker and master and is used for sharing information
between each other. When the application is launched, and a thread is instan-
tiated, the master communicates with the coordinator component to fetch the
node for launching the thread (2/GetNode). The coordinator communicates with
other components responsible for scheduling and returns the node (3/ReturnN-
ode). Upon receiving the information of the node for remotely spawning the
thread, the master finally launches the thread on the worker (4/LaunchThread).
Here in this example, worker 2 is chosen for running the thread.

Scheduling Heuristics When an application launches a thread, the master is
responsible for making scheduling decisions based on the chosen heuristic. The
worker can also make scheduling decisions if a thread spawns multiple threads.
The middleware supports two types of scheduling and they are presented below:

Centralized Scheduling In centralized scheduling, the decisions are taken entirely
by a single node. Here, the master is responsible for making every scheduling
decision. Based on the specified heuristic, the master selects a worker for re-
motely executing the thread and also maintains state information. The central-
ized scheduling heuristics supported by the middleware are:

Round-Robin : In round-robin scheduling, the threads launched by the
application are remotely spawned on the workers in a circular manner. Threads
are launched as and when they arrive and the scheduling is static by nature. It
does not take into account any information from the system and the workers are
chosen in the order they registered with the master.



Resource-Load: Scheduling decisions are made depending on the load of
every worker. The supported scheduling algorithms based on load information
are:

– CPU-Load: The CPU load of every worker is monitored by the master
and the threads are remotely launched on the worker with the least CPU
load. The master maintains state information about the CPU load of every
worker. The load information of CPU and memory of the system is obtained
using the library SIGAR.

– Load-Average: Threads are scheduled on nodes with the least cpu utiliza-
tion until the cpu load gets saturated. The scheduling heuristics then aims
at equalizing the load average across the cluster. The information about load
averages in linux are obtained from the command line utility top. However,
the values of load average obtained from top are not instantaneous. They are
measured in three ranges as a moving average over one minute, five minute
and fifteen minutes. In all Linux kernels the time taken for updating the mov-
ing average is five seconds. If multiple threads are launched instantaneously
within a five second window, it is possible that all the threads are launched
on the worker with the lowest load average. This problem is circumvented
by an estimation of number of threads to launch based on the current values
of load average.

Listing 1.1. Scheduling heuristic based on load average

1 i f ( loadAvgMonitor == true ){
2 f o r each worker :
3 i f ( avgLoad< NumberProcessors )
4 avgLoadMap . put ( nodeID , NumberProcessors − avgLoad )
5 e l s e
6 avgLoadMap . put ( nodeID , 1 )
7 loadAvgMonitor=f a l s e
8 }
9 se lectedNode = NodeID with maximum value in avgLoadMap

10 avgLoadMap . put ( se lectedNode , value−1)
11 i f ( a l l va lues in avgLoadMap . va lueSet == 0){
12 loadAvgMonitor = true
13 }

In the pseudocode listed in listing 1.1, the number of threads to be scheduled
on a worker is inversely proportional to the load average. If the load average
is less than the number of processors, only so many threads are launched
to fill up the processor queue to the number of processors in the worker.
Any further load monitoring is performed only after all these threads are
scheduled.

– Accelerated-Load-Average: This heuristic is similar to the scheduling
heuristic Load-Average but is not as conservative and takes into account
instantaneous changes in load average. It allows for scheduling the minimum
number of threads possible while keeping the estimation correct and at the
same time aiding in using a recent value of load average. Similarly, difference
in load average is also inversely proportional to the number of threads to
be scheduled. In order to achieve scheduling of at least one thread on any
worker, the highest difference in load average is remapped to one and other
differences are shifted accordingly.



Listing 1.2. Scheduling heuristic based on accelerated load average

1
2 i f ( loadAvgMonitor == true ){
3 i f ( ! f i r s t run ){
4 f o r each worker :
5 avgLoadDiffMap . put ( nodeID , AvgLoadMap − prevAvgLoadMap)
6 }
7 i f ( f i r s t run | | a l l va lues in avgLoadDiffMap . va lueSet == 0){
8 f o r each worker :
9 i f ( avgLoad< NumberProcessors )

10 avgLoadMap . put ( nodeID , NumberProcessors −
avgLoad )

11 e l s e
12 avgLoadMap . put ( nodeID , 1 )
13 loadAvgMonitor=f a l s e
14 }
15 // r ema p p i n g maximum v a l u e i n l o a d A v g D i f f t o 1
16 i f ( a l l va lues in avgLoadDiffMap . va lueSet != 0){
17 f o r each worker :
18 avgLoadMap . put ( nodeID , loadAvgDif f . cur rentva lue /max(

loadAvgDif f . va lueSet ) )
19 }
20 Copy va lues avgLoad to prevAvgLoadMap
21 // r ema p p i n g minimum v a l u e i n avgLoadMap t o 1
22 f o r each worker :
23 avgLoadMap . put ( nodeID , avgLoadMap . cur rentva lue / min (avgLoadMap .

va lueSet ) )
24 }
25 se lectedNode = NodeID with maximum value in avgLoadMap
26 avgLoadMap . put ( se lectedNode , value−1)
27 i f ( a l l va lues in avgLoadMap . va lueSet == 0){
28 loadAvgMonitor = true
29 }

The load information of CPU and load average is updated by the worker in
one of the two ways:

1. On-demand : When an application is just about to launch a thread, the
master requests all the workers to provide their current CPU load. State
information is updated only on demand from the master. This is a block-
ing update and it incurs an additional overhead of round trip time delay
to every worker for every thread launch.

2. Periodic: The load information of CPU maintained by the master is up-
dated after a constant period. The period required to perform updates
is a configurable parameter which can be chosen by the user. All up-
dates are performed asynchronously and hence they do not block remote
launching of threads.

– Thread load: The master maintains state information about the number
of threads each worker is currently running. The scheduling heuristic makes
decisions to launch threads on workers with the least number of currently
executing threads. This heuristic schedules in a circular fashion just like
round robin until at least one thread exits. Once a thread exits, it ceases
to behave like round robin. The state information is updated only when a
thread begins or finishes execution.

Hybrid Scheduling Once a thread is scheduled to a worker, depending on the
application, the thread itself may launch more internal threads. To handle such
scenarios, the Middleware also supports hybrid scheduling, where local copies of
information that help scheduling decisions are maintained. The trade-off between
consistency and performance is handled optimally for distributed scheduling.

In this approach, the master asynchronously sends the state information
table to every worker before any thread launch. The workers on receiving the
information table store a copy of the table locally. This is shown in figure 3.
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Workers use this local table for making scheduling decisions after which they
update the local table and then the global table. Once a worker updates its
local table, there are inconsistencies between the information table between the
workers. Although there are inconsistencies, they are lazily consistent and the
final update on the global table is always the most recent and updated value.
We achieve this by considering updates only to entries corresponding to that
worker, in both the global and the local table. This restriction prevents updates
to global table from blocking.

In this context, performance and consistency are inversely proportional to
each other and we aim to improve performance by sacrificing a bit on consistency.
If a worker has to schedule based on thread load and makes a choice by always
selecting the worker with the least loaded node from its local table, then it
could result in every worker selecting the same node for remotely spawning an
internal thread, eventually overloading the selected node. This happens because
the workers do not have a consistent view of the information table for a certain
period. To prevent this problem, workers make their choice based on weighted
random distribution.

Profiling The middleware allows for profiling an application in order to choose
the best scheduling heuristic for efficient load balancing and performance. In this
section we discuss the metrics measured by the profiler and present an optimal
period for updating the state information at the master. The metrics measured
by the profiler are dispersion of thread work load, thread inter arrival times and
resource usage of the application. These metrics help the user choose the right
scheduling heuristic to gain maximum performance. By measuring these metrics
it is possible to choose an optimal period for periodic updates of worker load
information to the master. Due to space constraint the derivation of the optimal
period is omitted. Optimal period for a worker is given by:

p =

√
tl ∗ (2 ∗ tm + RTT )

2 ∗N



where tl is the arrival time of the last thread, tm is the time to monitor load
by the worker, RTT is the round trip time to the Terracotta server and N is the
total number of threads.

4 Evaluation

We used up to three machines in a cluster, with Intel(R) Core(TM)2 Quad
processors (with four cores each) and 8GB of RAM, running Linux Ubuntu
9.04, with Java version 1.6, Terracotta Open Source edition, version 3.3.0, and
a cpu-intensive multi-threaded Java applications that has the potential to scale
well with multiple processors, taking advantage of the extra resources available
in terms of computational power.
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Comparison of Scheduling Heuristic for CPU-Intensive Application In this sec-
tion, the different scheduling algorithms are evaluated with different application
behavior. All the experiments are carried out with MD5 hashing of multiple
messages and the application behavior is modified in order to classify based on
its thread characteristics. To understand how different scheduling algorithms be-
have with different application characteristics, thread behavior is modified in an
ordered fashion. The characteristics varied for the application are: load of each
thread and thread inter-arrival times and is evaluated on a dedicated or uniform
cluster where there are no other workloads.

The results obtained for high thread workload-Low dispersion of thread work-
load and low inter-arrival times are shown in figure 4 and low thread workload-
Low dispersion of thread workload and low inter-arrival times are shown in
figure 5. Round robin performs better because the threads have equal workload
and are equally spaced with their arrival times. Cpu load-on demand incurs the
overhead of obtaining the load information from every worker before making a
decision. The results obtained for low thread workload are similar, except that



the the time taken for execution is considerably lower. This is because the work-
load is lesser. The combination of thread workload with inter-arrival times does
not affect any of the scheduling algorithms and as a result the behavior of the
scheduling algorithms remain the same.
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The application is then modified to make threads perform similar amount of
computation with threads arriving after a large amount of time. In other words,
the dispersion of thread work load is low and the time taken for arrival of threads
is high. The results obtained for high and low thread workloads are shown in
figure 6 and 7 . For high thread workload cpu load-periodic finishes faster than
cpu load-on demand unlike the previous scenario. The lowest period is enough
time to update the state information asynchronously as opposed to synchronous
update for on-demand. For low thread workload, some of the threads finish its
execution before all threads are scheduled and the thread load heuristic is thus
able to make a better decision than round robin. The overhead incurred by
monitoring the cpu load increases the time taken to schedule threads and hence
cpu-load heuristic performs worse than round-robin and thread load heuristic.

Finally the application is modified to make the threads perform different
amount of workloads. The workload is thus highly dispersed. The threads are
made to arrive almost instantaneously accounting for low inter-arrival time and
highly spread out accounting for high inter-arrival time.The results obtained are
shown in figure 8 and 9.

For high inter-arrival times, the scheduling heuristic cpu load-periodic con-
sumes the least amount of time to finish execution. Although the scheduling
heuristic has no information about the time taken to finish a job, some jobs
finish much earlier than all the threads are scheduled. This information helps
the heuristic make a better decision and spreads out threads of high and low
workloads equally among the different workers. For low inter-arrival times, Cpu
load -on demand performs better than any of the other scheduling heuristics,
because the work load of threads are unknown and this heuristic aims to greed-
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ily equalize the cpu load of different workers as and when threads arrive. Cpu
load-periodic takes a much higher time as the lowest possible period to update
the state information is higher than the inter-arrival time between most of the
threads. Most of the threads are hence scheduled on the same worker.
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Non-uniform cluster A non-uniform cluster is shared between multiple processes
or users and can have other workloads running along with our middleware. This
results in a varied load among different machines in the cluster. Figure 10 show
a situation where Cpu-load metric may not always provide a correct view of the
system. MD5 hashing application was executed on a cluster with two workers.
Worker2 was already executing an I/O intensive application and worker3 was
not loaded. Worker2 starts at a previous load of 0.3 while worker3 starts at a
load of 0. The I/O intensive application remains idle during most of its cpu
time as it either waits or performs an I/O operation. Because all the processes
are scheduled by the processor for a definite quanta, the overall cpu usage is
influenced by the I/O intensive process. Once the cpu-load of worker3 increases
beyond that of worker2, threads are scheduled on worker2 till the loads of both
these workers become equal but since the load of worker2 does not rise beyond



0.6, all consequent threads are launched on worker2. For applications with many
number of threads, the scheduling can prove rather detrimental than useful as
it considerably affects the response time. Load-Average and accelerated-Load-
Average scheduling heuristic overcomes this problem and this is shown in figure
11 and 12.
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Scheduling heuristic accelerated-load-average takes into account the instanta-
neous change in load averages caused by the application and thus performs better
than load-average scheduling. Load-average scheduling is very conservative as it
always takes into account the previous load of the system. From the figure 11
it can be seen that worker2 finishes execution at around 60 while worker3 fin-
ishes execution only at time 100. This is because of the conservative nature of
the scheduling heuristic and once the cpu load saturates, threads are launched
conservatively on worker2 as it already has a high load average. This problem is
mitigated by accelerated-Load-Average. From figure 12, it can be seen that the
execution finishes earlier because more threads are launched on worker2 at the
expense of tolerating minor differences in overall load average. Due to space con-
straints, tabulated classification of scheduling heuristics for different application
characteristics is not shown.

5 Conclusion

RATS middleware bridges the gap between transparency and efficient scheduling
of threads using Terracotta to keep data consistent across the cluster and scale
existing applications with ease. It supports multiple scheduling heuristics, each
best suited for a specific thread behavior in an application. The thread behavior
can be obtained by the profiling feature supported by the middleware. Based on
the results obtained, a cpu-intensive application can be modeled based on the
characteristics of the cluster and thread characteristics. The cluster characteris-
tics is classified into two categories dedicated or uniform cluster and unbalanced
or non-uniform cluster. An application with varying thread characteristics can



be modeled for a dedicated cluster as per the results obtained through figure
4 to 9. Non-uniform cluster has the same behavior for on-demand and periodic
updates of resource usage as that of uniform cluster. It is important to note
that the behavior of scheduling heuristic round-robin and thread-load are un-
predictable in a non-uniform cluster with any kind of application. Similarly with
an existing I/O or network intensive load, the scheduling heuristic cpu-load be-
comes irrelevant and accelerated-load-average performs the best.
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