
Efficient Support for In-Place Metadata in
Transactional Memory

Ricardo J. Dias, Tiago M. Vale, and João M. Lourenço?

Departamento de Informática and CITI
Universidade Nova de Lisboa, Portugal

{ricardo.dias,t.vale}@campus.fct.unl.pt
joao.lourenco@fct.unl.pt

Abstract. Implementations of Software Transactional Memory (STM)
algorithms associate metadata with the memory locations accessed dur-
ing a transaction’s lifetime. This metadata may be stored either in-place,
by wrapping every memory cell in a container that includes the memory
cell itself and the corresponding metadata; or out-place (also called ex-
ternal), by resorting to a mapping function that associates the memory
cell address with an external table entry containing the corresponding
metadata. The implementation techniques for these two approaches are
very different and each STM framework is usually biased towards one
of them, only allowing the efficient implementation of STM algorithms
following that approach, hence inhibiting the fair comparison with STM
algorithms falling into the other. In this paper we introduce a technique
to implement in-place metadata that does not wrap memory cells, thus
overcoming the bias by allowing STM algorithms to directly access the
transactional metadata. The proposed technique is available as an ex-
tension to the DeuceSTM framework, and enables the efficient imple-
mentation of a wide range of STM algorithms and their fair (unbiased)
comparison in a common STM infrastructure. We illustrate the benefits
of our approach by analyzing its impact in two popular TM algorithms
with two different transactional workloads, TL2 and multi-versioning,
with bias to out-place and in-place respectively.

1 Introduction

Software Transactional Memory (STM) algorithms differ in the used read strate-
gies (visible or invisible), update strategies (direct or deferred), conflict resolu-
tion policies (contention management), progress guarantees (blocking or non-
blocking), consistency guarantees (opacity or snapshot isolation), and interaction
with non-transactional code (weak or strong isolation), among others. Some STM

? This research was partially supported by the EU COST Action IC1001
(Euro-TM), the Portuguese national research projects RepComp (PTDC/EIA-
EIA/108963/2008), Synergy-VM (PTDC/EIA-EIA/113613/2009), and the research
grant SFRH/BD/41765/2007.



2

frameworks (e.g., DSTM2 [7] and DeuceSTM [8]) aim at allowing the implemen-
tation and comparison of different STM algorithms using a unique transactional
interface, and are frequently used for experimenting with new algorithms.

STM algorithms manage information per transaction (frequently referred to
as a transaction descriptor), and per memory location (or object reference) ac-
cessed within that transaction. The transaction descriptor is typically stored in
a thread-local memory space and maintains the information required to validate
and commit the transaction. The per memory location information depends on
the nature of the STM algorithm, which we will henceforth refer to as metadata,
and may be composed by e.g. locks, timestamps or version lists. Metadata is
stored either “near” each memory location (in-place strategy), or in an exter-
nal mapping table that associates the metadata with the corresponding memory
location (out-place or external strategy).

STM libraries targeting imperative languages, such as C, frequently use an
out-place strategy, while those targeting object-oriented languages bias towards
the in-place strategy. The out-place strategy is implemented by using a table-like
data-structure that efficiently maps memory references to its metadata. Storing
the metadata in a pre-allocated table avoids the overhead of dynamic memory
allocation, but incurs in overhead for evaluating the location-metadata mapping
function and has limitations imposed by the size of the table. The in-place strat-
egy is usually implemented by using the decorator design pattern [6] that is used
to extend the functionality of an original class by wrapping it in a decorator class,
which also contains the required metadata. This technique allows the direct ac-
cess to the object metadata without significant overhead, but is very intrusive
to the application code, which must be rewritten to use the decorator classes.
This decorator pattern based technique also incurs in two other problems: some
additional overhead for non-transactional code, and multiple difficulties to cope
with primitive and array types. Riegel et al. [10] briefly describe the tradeoffs of
using in-place versus out-place strategies.

DeuceSTM is among the most efficient STM frameworks for the Java pro-
gramming language and provides a well defined interface that is used to imple-
ment several STM algorithms. On the application developer’s side, a memory
transaction is defined by adding the annotation @Atomic to a Java method, and
the framework automatically instruments the application’s bytecode by inject-
ing callbacks to the STM algorithm, intercepting the read and write memory
accesses. The injected callbacks provide the referenced memory address as ar-
gument, limiting the range of viable STM algorithms to be used by forcing an
out-place strategy.

This paper describes the adaptation and extension of DeuceSTM to support
the in-place metadata strategy without making use of the decorator pattern.
Our new approach complies to the following properties:

Efficiency Our extension does not rely on an auxiliary mapping table, thus
providing fast direct access to the transactional metadata; transactional
code avoids the extra memory dereference imposed by the decorator pat-
tern; no performance overhead is introduced for non-transactional code, as



3

it is oblivious to the presence of metadata in objects; primitive types are
fully supported, even in transactional code; and we propose a solution for
supporting transactional N-dimensional arrays with a negligible overhead for
non-transactional code.

Flexibility Our extension supports both the original out-place and the new in-
place strategies simultaneously, hence imposing no restrictions on the nature
of the algorithms and their implementations.

Transparency Our extension automatically identifies, creates and initializes all
the necessary additional metadata fields in objects; non-transactional code
is oblivious to the presence of metadata in objects, hence no source code
changes are required, although it does some light transformation on the
non-transactional bytecode; the new transactional array types (that support
metadata for individual cells) are compatible with the standard arrays, hence
not requiring pre-/post-processing of the arrays when invoking standard or
third-party non-transactional libraries.

Compatibility Our extension is fully backwards compatible and the already
existing implementations of STM algorithms are executed with no changes
and with null or negligible performance overhead.

In the remainder of this paper, we describe the DeuceSTM framework and
the usage of out-place strategy in §2. In §3 we describe the properties of in-place
strategy, and its implementation as an extension to DeuceSTM. We evaluate our
implementation with some benchmarks in §4, and discuss the related work in §5.
We finish with some concluding remarks in §6.

2 DeuceSTM and the Out-Place Strategy

Algorithms such as TL2 [4] or LSA [11] use an out-place strategy by resorting
to a very fast hashing function and storing a single lock in each table entry.
However, due to performance issues, the mapping table does not avoid hash
collisions and thus two memory locations may be mapped to the same table
entry, resulting in the false sharing of a lock for two different memory locations.

The out-place strategy fits well to algorithms whose metadata information
does not depend on the memory locations, such as locks and timestamps, but
is unfitting for algorithms that need to store location-dependent metadata in-
formation, e.g., multi-version based algorithms. The out-place implementations
for these algorithms require a mapping table with collision lists, which impose a
significant and unacceptable performance overhead.

DeuceSTM provides the STM algorithms with a unique identifier for an ob-
ject field, composed by a reference to the object and the field’s logical offset
within that object. This unique identifier can then be used by the STM algo-
rithms as a key to any map implementation that associate the object fields with
the transactional metadata. Likewise for array types, the unique identifier of an
array’s cell is composed by the array reference and the index of that cell. It is
worthwhile to mention that DeuceSTM relies heavily on bytecode instrumenta-
tion to provide a transparent transactional interface to application developers,



4

which are not aware of how the STM algorithms are implemented nor of the
strategy being used to store the transactional metadata.

DeuceSTM is an extensible STM framework that may be used to compare
different STM algorithm implementations. However, it is not fair to compare an
algorithm that fits very well to the out-place strategy with another algorithm
that does not. In the concrete case of DeuceSTM, the framework only supports
an out-place strategy, therefore being inappropriate for e.g. multi-version ori-
ented STM algorithms. We have extended DeuceSTM to, in addition to the
out-place strategy, also support an efficient in-place strategy, while keeping the
same transparent transactional interface to the applications.

3 Support for In-Place Strategy

The unique identifier of an object’s field is composed by the object reference and
the field’s logical offset. DeuceSTM computes that logical offset at compile time,
and for every field f in every class C an extra static field fo is added to that
class, whose value represents the logical offset of f in class C. No extra fields are
added for array cells, as the logical offset of each cell corresponds to its index.
When there is a read or write memory access (within a memory transaction)
to a field f of an object O, or to the array element A[i], the run-time passes
the pair (O, fo) or (A, i) respectively as the argument to the callback function.
The STM algorithm shall not differentiate between field and array accesses. In
DeuceSTM, if the algorithm needs to e.g. associate a lock with a field, it has to
store the lock in an external table indexed by the hash value of the pair (O, fo).

In our approach for extending DeuceSTM to support an in-place strategy,
we replace the previous pair of arguments to callback functions (O, fo) with
a new metadata object fm, whose class is specified by the STM algorithm’s
programmer. We guarantee that there is a unique metadata object fm for each
field f of each object O, and hence the use of fm to identify an object’s field is
equivalent to the pair (O, fo). The same applies to arrays where we ensure that
there is a unique metadata object am for each position of an array A.

3.1 Implementation

Although the implementation of the support for in-place metadata objects differs
considerably for class fields and array elements, a common interface is used
to interact with the STM algorithm implementation. This common interface is
supported by a well defined hierarchy of metadata classes, illustrated in Figure 1,
where the rounded rectangle classes are defined by the STM algorithm developer.

All metadata classes associated with class fields extend directly from the top
class TxField. For array elements, we created specialized metadata classes for
each primitive type in Java, the TxArr*Field classes, where * ranges over the
Java primitive types1. All the TxArr*Field classes extend from TxField, pro-

1 int, long, float, double, short, char, byte, boolean, and Object.



5

TxField

TxArrIntField TxArrObjectField...
...

User Defined
Class Fields

User Defined
Array Elem

User Defined
Array Elem

Fig. 1. Metadata classes hierarchy.

viding the STM algorithm with a simple and uniform interface for callback func-
tions, which shall be extended to include the support of new STM algorithms.
The newly defined metadata classes need to be registered in our framework to
enable its use by the instrumentation process, using a Java annotation in the
class that implements the STM algorithm, as exemplified in Listing 1.1.

Listing 1.1. Declaration of the STM algorithm specific metadata.

@InPlaceMetadata(
fieldObjectClass="TL2Field",
fieldIntClass="TL2Field",
...
arrayObjectClass="TL2ArrObjectField",
arrayIntClass="TL2ArrIntField",
...

)
final public class TL2Context implements ContextMetadata {
...

}

The STM algorithm must implement a well defined interface that includes
a callback function for the read and write operations on each Java type. These
functions always receive an instance of the super class TxField, but each one
knows precisely which metadata subclass was actually used to instantiate the
metadata object.

Lets now see where and how the metadata objects are stored, and how they
are used on invocation of the callback functions. We will explain separately the
management of metadata objects for class fields and for array elements.

Class Fields During the execution of a transaction, there must be a metadata
object fm for each accessed field f of object O. A very efficient way to imple-
ment this metadata object fm is by making it accessible by a single dereference
operation from object O. Therefore, for each declared field in a class C, we add
an additional metadata field of the appropriate type. The general rule can be
described as: given a class C that has a set of declared fields {f1, . . . , fn}, we



6

add a metadata object field for each of the initial fields, such that the class ends
with the set of fields {f1, . . . , fn, fm

1+n, . . . , f
m
n+n} where the field fk is associated

with the metadata field fm
k+n for any k ≤ n. In Listings 1.2 and 1.3 we show a

concrete example of the transformation of a class with two fields.

Listing 1.2. The original class.

class C {
int a;
Object b;

}

=⇒

Listing 1.3. The transformed class.

class C {
int a;
Object b;
TxField a_metadata;
TxField b_metadata;

}

Each metadata field is instantiated at the constructor of the class where the
field is declared. This ensures that whenever a new instance of a class is created,
the corresponding metadata objects are also new and unique.

Opposed to the approach based in the decorator pattern, where primitive
types must be replaced with their object equivalents (e.g., an int field is re-
placed by an Integer object), our transformation approach keeps the primitive
type fields untouched, simplifying the interaction with non-transactional code,
limiting the code instrumentation and avoiding autoboxing and its overhead.

Array Elements The structure of an array is very strict, with each array cell
containing a single value of a well defined type, and no other information can
be added to those elements. The common approach to overcome this limitation
is to change the array to an array of objects that wrap the original value and
the additional information. This transformation has strong implications in the
remaining of the application code, as code statements expecting the original
array type or array element will now have to be rewritten to receive the new
array type or wrapping class respectively. This problem is even more complex if
the arrays with wrapped elements were to be manipulated by non-instrumented
libraries, such as the JDK libraries.

The solution we propose is also based on changing the type of the array to
be manipulated by the instrumented application code, but strongly limiting the
implications for the remaining non-instrumented code. We keep all the values
in the original array, and have a sibling second array, only manipulated by the
instrumented code, that contains the additional information and references to
the original array. The type of the declaration of the base array is changed to the
type of the corresponding sibling array (TxArr*Field), as shown in Figure 2.
This Figure also illustrates the general structure of the sibling TxArr*Field

arrays (in this case, a TxArrIntField array). Each cell of the sibling array has
the metadata information required by the STM algorithm, its own position/index
in the array, and a reference to the original array where the data is stored (i.e.,
where the reads and updates take place). This scheme allows the sibling array to
keep a metadata object for each element of the original array, while maintaining



7

the original array always updated and compatible with non-transactional legacy
code.

class D {
int[] a; //base array

}

index=0
array
index=1
array
index=2
array

5

3

8

[0]

[2]

[1]

[0]

[1]

[2]

TxArrIntField[3] int[3]

=⇒
class D {

TxArrIntField[] a;
TxField a_metadata;

}

class TxArrIntField {
int[] array; //base array
int index;

}

Fig. 2. Memory structure of a TxArrIntField array.

Non-transactional methods that have arrays as parameters are also instru-
mented to replace the array type by the corresponding sibling TxArr*Field.
The value of an array element is then obtained by dereferencing the pointer to
the original array kept in the sibling, as illustrated in Listings 1.4 and 1.5. When
passing an array as argument to an uninstrumented method (e.g., from the JDK
library), we can just pass the original array instance. Although the instrumen-
tation of non-transactional code adds a dereference operation when accessing
an array, we do avoid the autoboxing of primitive types that would impose an
increased overhead.

Listing 1.4. Access to an ar-
ray cell.

void foo(int[] a) {
// ...
t = a[i];

}

=⇒

Listing 1.5. Access to an array cell from
the transformed array.

void foo(TxArrIntField[] a) {
// ...
t = a[0].array[i];

}

Multi-dimensional arrays The special case of multi-dimensional arrays is
tackled using the TxArrObjectField class, which has a different implementation
from the other specialized metadata array classes. This class has the additional
field nextDim, which may be null in the case of a uni-dimensional reference type
array, or may hold the reference of the next array dimension by pointing to
another array of type TxArr*Field. Once again, the original multi-dimensional
array is always up to date and can be safely used by non-transactional code.

Figure 3 depicts the memory structure of a bi-dimensional array of integers.
Each element of the first dimension of the sibling array has a reference to the
original integer matrix. The elements of the second dimension of the sibling array
have a reference to the second dimension of the matrix array.



8

index=0
array

nextDim

[0]

index=1
array

nextDim

[1]

index=0
array
index=1
array
index=2
array

index=0
array
index=1
array
index=2
array

[0]

[2]

[1]

[0]

[2]

[1]

[0]

[1]
[0]

[1]

[2]

[0]

[1]

[2]

TxArrObjectField[2]

TxArrIntField[3]

TxArrIntField[3]

int[2][3]
int[3]

int[3]

Fig. 3. Memory structure of a multi-dimensional TxArrIntField array.

4 Performance Evaluation

We evaluated our approach in two dimensions: the performance overhead re-
sulting from the introduction of metadata associated with object fields, and the
performance improvements achieved by implementing a multi-versioning STM
algorithm (JVSTM [3]) using our extension (with in-place metadata), when com-
pared to an equivalent implementation in the original DeuceSTM (with out-place
metadata). To measure the transactional throughput we used the vanilla micro-
benchmarks available in the DeuceSTM framework. No changes were necessary to
execute the benchmarks on our extension of DeuceSTM with in-place metadata,
as all the necessary bytecode transformations were performed automatically.

The benchmarks were executed in a computer with four AMD Opteron 6168
12-Core processors @ 1.9GHz with 12x512KB of L2 cache and 128GB of RAM,
running Red Hat Enterprise Linux Server Release 6.2 with Linux 2.6.32 x86_64.

To evaluate the overhead of our extension, we compared the performance of
the TL2 algorithm as provided by the original DeuceSTM distribution, with an-
other implementation of TL2 using the new interface of our modified DeuceSTM.
The original DeuceSTM interface for callback functions provide a pair with the
object reference and the field logical offset. The new interface provides a refer-
ence to the field metadata (TxField) object. Despite using the in-place metadata
feature, the new implementation of TL2 resembles the original one as much as
possible and still uses an external table to map memory references to locks.
By comparing these two similar implementations, we can measure the overhead
introduced by the management of the metadata object fields and sibling arrays.

Figure 4 depicts the overhead of our extension with respect to the original
DeuceSTM for two data structures: a Red-Black Tree and a Skip List. The
former only uses metadata objects for class fields, while the latter also make
use of metadata arrays. We executed each data structure with two different
workloads: a read-only workload, and a read-write workload with an average of
10% of update operations. The overhead is in percentage and is relative to the
out-place implementation of TL2 in the original DeuceSTM.



9

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

O
v
e

rh
e

a
d

 (
%

)

Threads

IntSet RBTree, update=0%

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

O
v
e

rh
e

a
d

 (
%

)

Threads

IntSet SkipList, update=0%

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

O
v
e

rh
e

a
d

 (
%

)

Threads

IntSet RBTree, update=10%

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

O
v
e

rh
e

a
d

 (
%

)

Threads

IntSet SkipList, update=10%

Fig. 4. Overhead measure of the usage of metadata objects relative to out-place TL2.

In the Red-Black tree benchmark, the use of metadata objects in class fields
in a read-only workload (top-left chart) has a negligible overhead. In a read-
write workload (bottom-left chart) there is an average overhead of 10% with
respect to the out-place version. This overhead results from the additional allo-
cations necessary to initialize metadata objects. For instance, when adding a new
node to the tree, we need to allocate additional metadata objects for the value,
color, left, right and parent fields. In the case of the Skip List benchmark, each
node contains an array of nodes. In the read-only workload (top-right chart),
there is an average overhead of 20% with respect to the out-place strategy that
uses the original arrays declared in the program. Although no new nodes are
allocated, there is a performance penalty to pay for the additional dereference
imposed by the support of in-place metadata for arrays. In the read-write work-
load (bottom-right chart), which allocates new nodes, we get a slightly higher
overhead averaging 25%.

From this analysis we conclude that our in-place strategy is a viable op-
tion for implementing algorithms biased to in-place transactional metadata. To
stress this fact, we implemented two versions of the JVSTM algorithm as pro-
posed in [3], one in the original DeuceSTM framework using the out-place strat-
egy (JVSTM-Out), and another in the extended DeuceSTM using the in-place
strategy (JVSTM-In). The JVSTM-Out implementation uses an open concur-
rent hash table to map each accessed memory location to its list of versions.
Hence, for each memory location accessed, we perform a search in the hash ta-
ble to find the respective version list. If none is found, a new one is created and



10

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

Sp
ee

du
p 

(x
 fa

st
er

)

Threads

IntSet RBTree, update=10%

JVSTM-In
JVSTM-NoGC

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

Sp
ee

du
p 

(x
 fa

st
er

)

Threads

IntSet SkipList, update=10%

JVSTM-In
JVSTM-NoGC

Fig. 5. Speedup of JVSTM-In and JVSTM-NoGC relative to JVSTM-Out

added to the hash map. The JVSTM-In implementation uses metadata objects
containing the version lists, thus when there is an access to an object field or
an array element, a direct reference to its version list is obtained from the cor-
responding metadata field. JVSTM-In algorithm follows the specification in [3],
and although it exhibits a much better performance than the out-place version
(in average it is 5× faster), it has some scalability problems due to: i) the global
lock used in the commit phase, and ii) the garbage collection mechanism for
vboxes (used by JVSTM to wrap the object and its list of versions). Hence we
implemented an optimized variant of the JVSTM-In (JVSTM-NoGC), which re-
places the global lock in the commit phase with separate locks for each memory
locations in the transaction write-set, and which eliminates the vbox garbage
collection mechanism by imposing an upper bound on the size for the list of
versions for any memory location. In this new algorithm, transactions accessing
an old version that is not available anymore are aborted and restarted.

Figure 5 depicts the speedup results when comparing the JVSTM-In and
JVSTM-NoGC implementations with respect to the JVSTM-Out implementa-
tion. JVSTM-In is in average 5× faster than JVSTM-Out on both benchmarks.
JVSTM-NoGC is in average 33× faster in the Red-Black Tree, and 23× faster in
the Skip List. These results prove that our strategy to support in-place metadata
in DeuceSTM gave it leverage to implement algorithms that need direct access
to transactional metadata, thus enabling the fair comparison of a wide range of
STM algorithms, including those that could not be implemented efficiently in
the original DeuceSTM.

5 Related Work

Several STM algorithms were developed in the last few years, and comparing
their performance always requires a great implementation effort while using the
same transactional interface and programming language. Some STM frameworks
address this problem and provide a uniform transactional interface front-end and
a flexible run-time back-end, which is normally biased towards one of the in-place
or out-place strategies.



11

DSTM2 [7] is a flexible STM framework for the Java language which permits
the use of different synchronization techniques and recovery strategies as frame-
work plug-ins. DSTM2 creates transactional objects using the factory pattern,
and new factories can be implemented to test different properties of STM algo-
rithms. DSTM2 only allows to implement algorithms using the in-place strategy.

DeuceSTM [8], which is the base of our work, is one of the most efficient
STM frameworks available for the Java programming language. It provides a well
defined interface that allows to implement several STM algorithms, and relies in
Java bytecode instrumentation to intercept transaction limits and transactional
memory accesses and invoke developer-defined callback functions. DeuceSTM
has a strong bias towards the out-place approach.

STM algorithms such as TL2 [4], LSA [11] and SwissTM [5] are usually im-
plemented using an out-place strategy, thus viable for use in DeuceSTM. Others
such as JVSTM [3] and SMV [9] are better fit for the in-place strategy and
impracticable for DeuceSTM. Our extension of DeuceSTM overcomes this limi-
tation and allows the efficient implementation of algorithms using any of those
strategies, enabling their fair comparison.

Anjo et al. [2] developed a specialized transactional array targeting specifi-
cally the JVSTM framework, achieving considerable performance improvements
in read-dominant workloads that use arrays. Our approach when extending
DeuceSTM aimed at providing an efficient implementation for transactional ar-
rays that is backwards compatible, where no autoboxing is required and whose
values are kept in their original primitive format and are accessible to both
transactional and non-transactional code.

All the static optimizations proposed by Afek et al. [1] are orthogonal to our
work and can also be applied to algorithms using the new in-place strategy, thus
increasing the overall performance.

6 Concluding Remarks

To the best of our knowledge, the extension of DeuceSTM as described in this
paper creates the first Java STM framework providing a balanced support of both
in-place and out-place strategies. This is achieved by a transformation process
of the program bytecode that adds new metadata objects for each class field,
and that includes a customized solution for N-dimensional arrays that is fully
backwards compatible with primitive type arrays. The creation or structural
modification of arrays are not supported outside instrumented code, which is
oblivious to TxArr*Field and metadata.

In the current state of the proposed extension every field is subjected to this
transformation, hence there will be a considerable increase in the application’s
memory footprint. For example, for the Red-Black Tree benchmark with 50 000
elements in a read-only workload, the GNU time command reported 196MB
of memory used when using the out-place version of the TL2 algorithm, and
248MB when using the in-place version. This memory overhead can be mini-
mized by doing code analysis to discover the fields that are not accessed within



12

transactions, and skipping the creation and initialization of the metadata asso-
ciated with those fields, which will never be needed.

We evaluated our system by measuring the overhead introduced by our new
in-place interface with respect to the TL2 algorithm implementation provided in
DeuceSTM distribution package as reference. Although we can observe a light
slowdown in our new implementation of arrays, we would like to reinforce that
our solution has no limitations whatsoever concerning the type of the array ele-
ments, the number of dimensions, fits equally algorithms biased towards in-place
or out-place strategies, and all bytecode transformations are done automatically
requiring no changes to the source code. We also evaluated the effectiveness of
the new in-place interface by comparing the performance of two multi-version
STM implementations: one using the newly proposed in-place strategy, and an-
other using an out-place strategy resorting to an external mapping table. The
version using the new in-place strategy was in average 5× faster than the one
using the out-place strategy. The optimized version of the JVSTM algorithm
using the in-place strategy was in average 33× faster than the out-place version.

References

1. Afek, Y., Korland, G., Zilberstein, A.: Lowering STM overhead with static analysis.
In: Proc. 23rd Int. Workshop on Languages and Compilers for Parallel Computing
(Oct 2010)

2. Anjo, I., Cachopo, J.: Lightweight transactional arrays for read-dominated work-
loads. In: Proc. 11th Int. Conf. on Algorithms and Architectures for Parallel Pro-
cessing. pp. 1–13. Springer-Verlag, Berlin, Heidelberg (2011)

3. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Sci. Comput. Program. 63, 172–185 (Dec 2006)

4. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Proc. 20th Int. Symp.
on Distributed Computing. LNCS, vol. 4167, pp. 194–208. Springer (Sep 2006)

5. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
Proc. Int. Conf. on Programming Language Design and Implementation. pp. 155–
165. ACM (2009)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1994)

7. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. In: Proc. 21st conference on Object-Oriented Program-
ming Systems, Languages, and Applications. pp. 253–262. ACM (2006)

8. Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency with Java STM. In:
Proc. MultiProg 2010: Programmability Issues for Heterogeneous Multicores (2010)

9. Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: Selective multi-
versioning STM. In: Proc. 25th Int. Symp. on Distributed Computing. LNCS, vol.
6950, pp. 125–140. Springer (2011)

10. Riegel, T., Brum, D.B.D.: Making object-based STM practical in unmanaged en-
vironments. In: Proc. of the 3rd Workshop on Transactional Computing (2008)

11. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Proc. 20th Int. Symp. on Distributed Computing. LNCS, vol. 4167, pp. 284–298.
Springer (Sep 2006)


